K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2018

xem trên mạng nhé 

19 tháng 12 2018

\(Q=\frac{x^2+2x+1-x-1+1}{x^2+2x+1}=1+\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\)

Đặt \(A=\frac{1}{x+1}.\text{ta có: }Q=A+A^2+1=A^2+\frac{2A.1}{2}+\frac{1}{4}+\frac{3}{4}=\left(A+\frac{1}{2}\right)^2\ge\frac{3}{4}\)

\(\text{dấu bằng xảy ra khi: }A=\frac{1}{2}.\Rightarrow\frac{1}{x+1}=\frac{1}{2}\Rightarrow x=1.\text{Vậy}...\)

18 tháng 8 2021

Áp dụng bất đẳng thức AM-GM ta có :

\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)

Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3

9 tháng 9 2017

Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\) 

Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)

Vậy \(P_{min}=-7\) khi x = 2

15 tháng 1 2017

Ta có: \(Q=\frac{x^2+x+1}{x^2+2x+1}\)

\(\Rightarrow\frac{1}{Q}=\frac{x^2+2x+1}{x^2+x+1}\)

Để Q min thì \(\frac{1}{Q}\)max

\(\frac{1}{Q}=\frac{x^2+2x+1}{x^2+x+1}=1+\frac{x}{x^2+x+1}\)

\(=1+\frac{1}{3}+\frac{1}{3}.\frac{-x^2+2x+1}{x^2+x+1}=\frac{4}{3}-\frac{1}{3}.\frac{-\left(x-1\right)^2}{x^2+x+1}\le\frac{4}{3}\)

(Vì mẫu > 0 và tử \(\ge0\))

\(\Rightarrow\frac{1}{Q}\)đạt GTLN là \(\frac{4}{3}\)khi x = 1

Vậy Q đạt GTNN là \(\frac{3}{4}\)khi x = 1

15 tháng 1 2017

Những sai sót do đánh máy bạn tự sửa hộ m nhé

13 tháng 2 2019

\(A=\frac{2x^2+x-1}{x^2-2x+2}\Leftrightarrow Ax^2-2A.x+2A=2x^2+x-1\)

\(\Leftrightarrow x^2\left(A-2\right)-2x\left(A+1\right)+\left(2A+1\right)=0\) (1)

+) Với A = 2 thì \(-6x+5=0\Leftrightarrow x=-\frac{5}{6}\)

+) Với A khác 2 thì (1) là phương trình bậc 2.Tức (1) có nghiệm

Hay \(\Delta'=\left(A+1\right)^2-\left(A-2\right)\left(2A+1\right)\ge0\)

Giải cái bất phương trình trên là ok!