Cho \(\Delta ABC\)có \(\widehat{A}=50^o\), AB = AC. Tính \(\widehat{B},\widehat{C}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B E D Xét tam giác vuông ABC và tam giác vuông ADE có :
AB=AD
AC=AE
=> tam giác ABC= tam giác ADE ( 2 cạnh góc vuông )
70 o 30 o A B C
Bài làm
a) Xét tam giác ABC,
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)( Định lí tổng ba góc của tam giác )
Hay 70o + 30o + \(\widehat{C}\)= 180o
=> \(\widehat{C}\) = 180o - 70o - 300
=> \(\widehat{C}\) = 80o
Vậy \(\widehat{C}=80^o\)
# Chúc bạn học tốt #
Kẻ phân giác AD (D thuộc BC)
\(\Rightarrow\widehat{B}=\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{A}}{2}\)
Xét hai tam giác ABC và DAC có:
\(\left\{{}\begin{matrix}\widehat{C}\text{ chung}\\\widehat{B}=\widehat{CAD}\end{matrix}\right.\) \(\Rightarrow\Delta ABC\sim\Delta DAC\left(g.g\right)\)
\(\Rightarrow\dfrac{AC}{DC}=\dfrac{BC}{AC}\Rightarrow DC=\dfrac{AC^2}{BC}=\dfrac{27}{4}\)
\(\Rightarrow BD=BC-DC=\dfrac{21}{4}\)
Áp dụng định lý phân giác:
\(\dfrac{BD}{AB}=\dfrac{DC}{AC}\Rightarrow AB=\dfrac{BD.AC}{DC}=7\)
\(1,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \text{Mà }\widehat{A}=\widehat{B}=\widehat{C}\\ \Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=\dfrac{180^0}{3}=60^0\\ 2,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \Rightarrow\widehat{B}+\widehat{C}=180^0-\widehat{A}=110^0\\ \text{Mà }\widehat{B}-\widehat{C}=10^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{B}=\left(110^0+10^0\right):2=60^0\\\widehat{C}=60^0-10^0=50^0\end{matrix}\right.\)
a)
A B C 100*
=> Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o
100o + \(\widehat{B}+\widehat{C}\) = 180o
\(\widehat{B}+\widehat{C}\) = 180o - 100o
\(\widehat{B}+\widehat{C}\) = 80o
Góc B = (80o+50o):2 = 65o
=> \(\widehat{C}\) = 65o - 50o = 15o
Vậy \(\widehat{B}\) = 65o ; \(\widehat{C}\) = 15o
b)
80* A B C
Ta có : \(\widehat{3A}+\widehat{B}+\widehat{2C}\) = 180o
\(\widehat{3A}+\widehat{2C}\) = 180o - 80o
\(\widehat{3A}+\widehat{2C}\) = 100o
=> \(\widehat{A}\) = 100o:(3+2).3 = 60o
\(\widehat{C}\) = 100o - 60o = 40o
Vậy \(\widehat{A}\) = 60o ; \(\widehat{C}\) = 40o
b) Nếu các bạn chưa học tam giác cân thì làm như sau: VìΔBCD = ΔCBE cmt ⇒CD = BE
= Xét ΔBOE,ΔCODcó: = BE = CD cmt = cmt ⇒ΔBOE = ΔCOD g − c − g ⇒OB= OC(hai cạnh tương ứng) ( ) ^ CDB ^ BEC ^ EDO ^ ODC ( ) ^ BEO ^ CDOHình bạn tự vẽ nha!
a) Vì \(\widehat{B}=\widehat{C}\left(gt\right)\)
Mà \(BD\) và \(CE\) là tia phân giác của \(\widehat{B}\) và \(\widehat{C}\) cắt nhau tại O.
=> \(\left\{{}\begin{matrix}\widehat{DBC}=\widehat{ECB}\\\widehat{DBE}=\widehat{ECD}\end{matrix}\right.\)
Xét 2 \(\Delta\) \(BCD\) và \(CBE\) có:
\(\widehat{BCD}=\widehat{CBE}\left(gt\right)\)
\(\widehat{DBC}=\widehat{ECB}\left(cmt\right)\)
Cạnh BC chung
=> \(\Delta BCD=\Delta CBE\left(g-c-g\right).\)
=> \(CD=BE\) (2 cạnh tương ứng)
b) Theo câu a) ta có \(\Delta BCD=\Delta CBE.\)
=> \(\widehat{ODC}=\widehat{OEB}\) (2 góc tương ứng)
Xét 2 \(\Delta\) \(OBE\) và \(OCD\) có:
\(\widehat{OEB}=\widehat{ODC}\left(cmt\right)\)
\(BE=CD\left(cmt\right)\)
\(\widehat{DBE}=\widehat{ECD}\left(cmt\right)\)
=> \(\Delta OBE=\Delta OCD\left(g-c-g\right).\)
=> \(OB=OC\) (2 cạnh tương ứng)
c) Xét 2 \(\Delta\) vuông \(OBK\) và \(OCH\) có:
\(\widehat{OKB}=\widehat{OHC}=90^0\left(gt\right)\)
\(OB=OC\left(cmt\right)\)
\(\widehat{DBE}=\widehat{ECD}\left(cmt\right)\)
=> \(\Delta OBK=\Delta OCH\) (cạnh huyền - góc nhọn)
=> \(OK=OH\) (2 cạnh tương ứng).
Chúc bạn học tốt!
Từ đề bài, tam giác ABC cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}=\frac{180^0-50^0}{2}=65^0\)
50 o A B C
Bài làm
Vì AB = AC ( giả thiết )
=> Tam giác ABC là tam giác cân tại A
=> B = C ( hai cạnh ở đáy )
Xét tam giác ABC cân tại A
Ta có: A + B + C = 180o ( định lí tổng ba góc của tam giác )
hay 50o+B+C=180o
=> B + C = 180o - 50o
=> B + C = 130o
Mà B = C
=> B = C = 130o/2=65o
Vậy B = C = 65o
# Chúc bạn học tốt #
=>