3. Cho đường tròn (O,R) đường kính AB. Gọi M là một điểm nằm giữa A và B. Qua M vẽ dây CD vuông góc với AB. Lấy điểm E đối xứng với A qua M.
a) Tứ giác ACED là hình gì? Vì sao?
b) Giả sử R = 6,5 cm, MA = 4 cm. Tính CD
c) Gọi H và K lần lượt là hình chiếu của M trên CA và CB. Chứng minh: MH.MK = 4.
a: ΔOCD cân tại O
mà OM là đường cao
nên M là trung điểm của CD
Xét tứ giác ACED có
M là trung điểm chung của AE và CD
AE vuông góc với CD
Do đó; ACED là hình thoi
b: OM=OA-MA=6,5-4=2,5cm
MB=2,5+6,5=9cm
\(CM=\sqrt{4\cdot9}=6\left(cm\right)\)
=>CD=12cm