Tìm x biết
|x|=|-3| (với x\(\ge\)0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\ge0\)
\(\Rightarrow\left(x^2-4x+3\right)\left(x+5\right)\ge0\).Ta có 2 trường hợp:
TH1:\(\hept{\begin{cases}x^2-4x+3\ge0\\x+5\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2-4x+4\ge1\\x+5\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^2\ge1\\x+5\ge0\end{cases}}\).Ta lại có 2 trường hợp:
Với \(\hept{\begin{cases}x-2\ge1\\x+5\ge0\end{cases}}\)\(\Rightarrow x\ge3\)
Với \(\hept{\begin{cases}x-2\le1\\x+5\ge0\end{cases}}\)\(\Rightarrow-5\le x\le3\Rightarrow x\in\left\{-5,-4,-3\right\}\)
TH2:\(\hept{\begin{cases}x^2-4x+3\le0\\x+5\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^2\le1\\x+5\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-2\le1\\x+5\le0\end{cases}}\)\(\Rightarrow x\le-5\)
Vậy....................
a) Ta có: \(2x + 3 \ge 0 \Leftrightarrow x \ge \frac{{ - 3}}{2}\)
\( \Rightarrow \) Tập hợp E là: \(E = \left\{ {x \in \mathbb{R}|x \ge \frac{{ - 3}}{2}} \right\}\)
và \( - x + 5 \ge 0 \Leftrightarrow x \le 5\)
\( \Rightarrow \) Tập hợp G là \(G = \left\{ {x \in \mathbb{R}|x \le 5} \right\}\)
\( \Rightarrow E \cap G = \){\(x \in \mathbb{R}|\)\(x \ge \frac{{ - 3}}{2}\) và \(x \le 5\)} \( = \left\{ {x \in \mathbb{R}|\frac{{ - 3}}{2} \le x \le 5} \right\}\)
Vậy tập hợp D \( = \left\{ {x \in \mathbb{R}|\frac{{ - 3}}{2} \le x \le 5} \right\} = [\frac{{ - 3}}{2}; 5]\)
b) Ta có: \(x + 2 > 0 \Leftrightarrow x>-2\)
\( \Rightarrow E = \left\{ {x \in \mathbb{R}|x >-2 }\right\}\)
và \( 2x - 9 < 0 \Leftrightarrow x < \frac{9}{2}\)
\( \Rightarrow G = \left\{ {x \in \mathbb{R}|x < \frac{9}{2}} \right\}\)
\( \Rightarrow E \cap G = \){\(x \in \mathbb{R}|\)\(x > -2 \) và \(x < \frac{9}{2}\)} \( = \left\{ {x \in \mathbb{R}|-2<x< {9\over 2} } \right\}\)
Vậy \( D= \left\{ {x \in \mathbb{R}|-2<x< {9\over 2}} \right\}=(-2;{9\over 2})\)
a:
Sửa đề: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\right)\cdot\left(\dfrac{\sqrt{x}-7}{\sqrt{x}+1}+1\right)\)
\(P=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right)\cdot\dfrac{\sqrt{x}-7+\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{2\sqrt{x}-6}{\sqrt{x}+1}\)
\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{2}{\sqrt{x}+1}=\dfrac{-6}{\sqrt{x}+3}\)
b: P>=1/2
=>P-1/2>=0
=>\(\dfrac{-6}{\sqrt{x}+3}-\dfrac{1}{2}>=0\)
=>\(\dfrac{-12-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>=0\)
=>\(-\sqrt{x}-15>=0\)
=>\(-\sqrt{x}>=15\)
=>căn x<=-15
=>\(x\in\varnothing\)
c: căn x+3>=3
=>6/căn x+3<=6/3=2
=>P>=-2
Dấu = xảy ra khi x=0
Đặt \(A=\dfrac{x}{x+2}=1-\dfrac{2}{x+2}\)
do \(x\ge0\Leftrightarrow x+2\ge2\Leftrightarrow\dfrac{1}{x+2}\le\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{-1}{x+2}\ge-\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{-2}{x+2}\ge-1\Leftrightarrow A=1-\dfrac{2}{x+2}\ge0\)
Dấu "=" xảy ra khi x = 0
\(\Rightarrow A_{min}=0\) khi x = 0
|x| = |-3|
=> |x| = 3
=> x = 3 hoặc x = -3
mà x > 0
nên x = 3
Có : |x|=|-3|=|3|
Mà \(x\ge0\)
=> x=3
Vậy x=3
nhớ tk m nha