Chứng minh A = 7^2^(4n+1) + 4^3^(4n+1) - 65 chia hết cho 100?
GIÚP MK NHA MK ĐAG CẦN RẤT RẤT GẤP!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Bổ sung điều kiện $n$ là số tự nhiên khác $0$
Gọi biểu thức trên là $A$. Ta có:
\(7\equiv -1\pmod 4\Rightarrow 7^{2^{4n+1}}\equiv (-1)^{2^{4n+1}}\equiv 1\pmod 4\)
\(4^{3^{4n+1}}\equiv 0\pmod 4\)
\(\Rightarrow A\equiv 1+0-65=-64\equiv 0\pmod 4\)
Vậy $A\vdots 4(*)$
Mặt khác:
Với $n$ là số tự nhiên khác $0$ thì $2^{4n+1}$ chia hết cho $4$
$\Rightarrow 7^{2^{4n+1}}=7^{4k}=(7^4)^k\equiv 1\pmod {25}$
$3^{4n+1}=3.81^n\equiv 3\pmod {10}$
$\Rightarrow 3^{4n+1}=10t+3$
$\Rightarrow 4^{3^{4n+1}}=4^{10t+3}=64.(4^{10})^t\equiv 64\pmod {25}$
Do đó:
$A\equiv 1+64-65\equiv 0\pmod {25}$ hay $A\vdots 25(**)$
Từ $(*); (**)\Rightarrow A\equiv 0\pmod {100}$
Ta có đpcm.
Bạn có thể gõ lại công thức rõ hơn được không?
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
xét n(n+1)(4n+1)
Có (nn+n1)(4n+1)
(2n+n)(4n+1)=3n(4n+1)
Mà 3 nhân với số nào cũng chia hết cho 3=>3n(4n+1)chia hết cho 3
xét3n(4n+1)
có 3n*4n+3n
=>n(3+3)4n
=>n6*4n=24n chia hết cho 2