Chứng minh rằng hai số chẵn liên tiếp có một số là bội của 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số chẵn liên tiếp có dạng 2k và 2k+2 ( k thộc N )
+Nếu k = 2q ( q thuộc N ) thì 2k = 2.2q = 4q chia hết cho 4 hay là bội của 4 (1)
+Nếu k = 2q+1 ( q thuộc N ) thì 2k+2 = 2.(2q+1)+2 = 4q+4 = 4.(q+1) chia hết cho 4 hay là bội của 4 (2)
Từ (1) và (2) => ĐPCM
Bội của 6 tức là chia hết cho 6
Chia hết cho 6 thì số đó sẽ chia hết cho cả 2 và 3( vì ƯCLN của 2 và 3 =1)
Bạn cần cm chia hết cho 2 và 3
Mà số đó chẵn => chia hết cho 2
Bn cm chia hết cho 3 nữa là được
mk hướng dẫn thôi, bn tự làm nha
bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên
gọi 2 số chẵn liên tiếp đó là: 2k,2k+2
2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8
gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4
2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)
k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)
từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1
câu c, tương tự vậy
Hai số chẵn liên tiếp có dạng 2a và 2a+2.Ta có
2ax(2a+2)=4ax(a+1)chia hết cho 4.Suy ra 2a hoặc 2a+2 phải chia hết cho 4 mặt khác 2a+2a+2 = 4a+2 ko chia hết cho 4.
.Vậy nếu 2a chia hết cho 4 thì 2a+2 ko chia hết cho 4 ngược lai nếu 2a+2 chia hết cho 4 thì 2a ko chia hết cho 4.
Vậy trong 2 số chẵn liên tiếp chỉ có 1 số chia hết cho 4.