\(x\div y\div z=5\div7\div8\)và \(x+y-z=2,4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)
\(\frac{x}{3}=2\Rightarrow x=6\)
\(\frac{y}{8}=2\Rightarrow y=16\)
\(\frac{z}{5}=2\Rightarrow z=10\)
\(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\) va \(x+y-z=69\)
Ta co: \(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\) ; \(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)
➤ \(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\) ➤ \(\dfrac{x+y-z}{20+24-21}\)
➤ \(\dfrac{69}{23}=3\) ➤ \(x=20.3=60\)
\(y=24.3=72\)
\(z=21.3=63\)
\(Vay\) \(x=60;y=72;z=63\)
\(2a=3b;5b=7c\) va \(3a+5c-7c=30\)
Ta co: \(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}\)
\(5b=7c\Rightarrow\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\)
⇒ \(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\) ⇒ \(\dfrac{3a}{63}=\dfrac{5c}{50}=\dfrac{7b}{98}\) ⇒ \(\dfrac{3a+5c-7b}{63+50-98}\)
⇒ \(\dfrac{30}{15}=2\) ➤ \(3a=63.2=126\) ➤ \(a=126:3=42\)
\(5c=50.2=100\) \(c=100:5=20\)
\(7b=98.2=196\) \(b=196:7=28\)
Vay \(a=42;c=20;b=28\)
\(x\div y\div z=3\div8\div5\) va \(3x+y-2z=14\)
Ta co: \(x\div y\div z=3\div8\div5\Rightarrow\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\)
⇒ \(\dfrac{3x}{9}=\dfrac{y}{8}=\dfrac{2z}{10}\) ⇒ \(\dfrac{3x+y-2z}{9+8-10}\)
⇒ \(\dfrac{14}{7}=2\) ➤ \(3x=9.2=18\) ➤ \(x=18:3=6\)
\(y=8.2\) \(y=16\)
\(2z=10.2=20\) \(z=20:2=10\)
Vay \(x=6;y=16;z=10\)
Chuc ban hoc tot
Ta có : \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{y}{5}\)
Quy đòng : \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y+z}{8+12+15}=\frac{35}{35}=1\)
\(\Leftrightarrow\begin{cases}\frac{x}{8}=1\Rightarrow x=1.8=8\\\frac{y}{12}=1\Rightarrow y=1.12=12\\\frac{z}{15}=1\Rightarrow z=1.15=15\end{cases}\)
Vậy x = 8 ; y = 12 ; z = 15
- Theo dề bài ta có:
\(\left(a+b\right):\left(b+c\right):\left(c+a\right)=6:7:8\)
=> \(\dfrac{a+b}{6}=\dfrac{b+c}{7}=\dfrac{c+a}{8}\)
- Áp dụng tính chất của dãy tỉ só bằng nhau ta có:
\(\dfrac{a+b}{6}=\dfrac{b+c}{7}=\dfrac{c+a}{8}\)\(=\dfrac{a+b+b+c+c+a}{6+7+8}=\dfrac{\left(a+b+c\right).2}{21}=\dfrac{14.2}{21}=\dfrac{28}{21}=\dfrac{4}{3}\)
- Suy ra:
\(a+b=\dfrac{4}{3}.6=8\)
- Vì \(a+b+c=14\)
nên \(\Rightarrow c=14-8=6\)
- Vậy c = 6
\(\left(a+b\right):\left(b+c\right):\left(c+a\right)=6:7:8\\ \Rightarrow\dfrac{a+b}{6}=\dfrac{b+c}{7}=\dfrac{c+a}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b}{6}=\dfrac{b+c}{7}=\dfrac{c+a}{8}=\dfrac{a+b+b+c+c+a}{6+7+8}=\dfrac{2a+2b+2c}{21}=\dfrac{2\left(a+b+c\right)}{21}=\dfrac{2\cdot14}{21}=\dfrac{28}{21}=\dfrac{4}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a+b}{6}=\dfrac{4}{3}\Rightarrow a+b=8\Rightarrow c=6\\\dfrac{b+c}{7}=\dfrac{4}{3}\Rightarrow b+c=9\dfrac{1}{3}\Rightarrow a=4\dfrac{2}{3}\\\dfrac{c+a}{8}=\dfrac{4}{3}\Rightarrow c+a=10\dfrac{2}{3}\Rightarrow b=3\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(a=4\dfrac{2}{3};b=3\dfrac{1}{3};c=6\)
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}=\frac{z^2}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{z^2}{4}=\frac{x^2-y^2+z^2}{25-9+4}=\frac{40}{20}=2\)
Suy ra:
x = 2 x 5 = 10
y = 2 x 3 = 6
z = 2 x 2 = 4
Hồi trưa mình cx nghĩ cách giống bạn nhưng khi thay vào thì lại ko đúng
Tìm x,y.z nha mấy bn
Theo đề:
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{8}\) và \(x+y-z=2,4\)
Theo tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{8}=\frac{x+y-z}{5+7-8}=\frac{2,4}{4}=\frac{3}{5}\)
=>x=3
y=4,2
z=4,8