K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

a) Ta có 

\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)

\(2A=1+\frac{1}{2}+...+\frac{1}{2^6}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)\)

\(A=1-\frac{1}{2^7}\)

Do \(1-\frac{1}{2^7}< 1\Rightarrow A< 1\left(đpcm\right)\)

7 tháng 5 2019

Ta có :

\(\frac{1}{1^2}< \frac{1}{1\cdot2};\frac{1}{2^2}< \frac{1}{2\cdot3};.....;\frac{1}{50^2}< \frac{1}{49\cdot50}\)

\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)

\(\Rightarrow a< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow a< 1-\frac{1}{50}=\frac{49}{50}\)

\(a< \frac{49}{50}< 1< 2\)

\(\Rightarrow a< 2\)

thanks bạn rất nhiều

6 tháng 3 2020

\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+........+\frac{100}{2^{100}}\)

\(\Rightarrow2A=1+\frac{2}{2}+\frac{3}{2^2}+..........+\frac{100}{2^{99}}\)

\(\Rightarrow2A-A=A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{99}}+\frac{100}{2^{100}}\)

\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{98}}+\frac{100}{2^{99}}\)

\(\Rightarrow2A-A=A=2-\frac{100}{2^{99}}< 2\)

Vậy \(A< 2\)

10 tháng 5 2017

gọi 1/41+1/42+1/43+...+1/79+1/80 là A

ta có:1/41>1/60,1/42>1/60,1/43>1/60,...,1/60=1/60

=>1/41+1/42+1/43+...+1/60>1/60

         1/61>1/80,..................................,1/80=1/80

=>1/61+1/62+............+1/80>1/80

=>1/41+1/42+1/43+...+1/79+1/80>1/60+1/80

lại có 7/12=1/4+1/3

         1/60.20=1/3 và 1/80.20=1/4

=>1/41+1/42+1/43+...+1/79+1/80>1/3+1/4

=>1/41+1/42+1/43+...+1/79+1/80>7/12

23 tháng 1 2019

Tổng trên có số số hạng là: \(\left(n-2\right):1+1=n-1\) số hạng

Suy ra \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\)

\(=\frac{\left(\frac{1}{n}+\frac{1}{2}\right)\left(n-1\right)}{2}=\frac{\frac{1}{n}\left(n-1\right)+\frac{1}{2}\left(n-1\right)}{2}\)

\(=\frac{1-\frac{1}{n}+\frac{n}{2}-\frac{1}{2}}{2}=\frac{\frac{1}{2}-\left(\frac{1}{n}-\frac{n}{2}\right)}{2}\)

\(=\frac{\left(\frac{1}{2}\right)}{2}-\frac{\left(\frac{2}{2n}\right)}{2}+\frac{\left(\frac{n^2}{2n}\right)}{2}=\frac{1}{4}-\frac{1}{2n}+\frac{n}{4}\)

Suy ra \(n\ne0\).Ta có: \(S=\frac{1}{4}-\frac{1}{2n}+\frac{n}{4}=\frac{1+n}{4}-\frac{1}{2n}\)

\(=\frac{2n^2+2n+4}{8n}=\frac{2\left(n+\frac{1}{2}\right)^2}{8n}+\frac{\left(\frac{7}{2}\right)}{8n}\)

\(=\frac{2\left(n+\frac{1}{2}\right)^2}{8n}+\frac{7}{16n}\)

Đến đây bí =)Alibaba!

9 tháng 5 2019

Sao k có ai giúp mk hết vậy >:((, thôi để mk tự giúp mk vậy :>. E mới nghĩ ra cách này có gì sai anh giúp đỡ.

Cách 1 - Ta có :

\(A=\frac{1}{1.2}+\frac{1}{1.3}+\frac{1}{1.4}+...+\frac{1}{3.2}+\frac{1}{3.3}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)

\(\Rightarrow A=\frac{5}{6}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)

Mà \(\frac{5}{6}>\frac{2}{3}\Rightarrow\frac{5}{6}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}>\frac{2}{3}\)

\(\Leftrightarrowđpcm\)

11 tháng 5 2019

~ Nguyệt ~:Đúng rồi nha em.

Anh nghĩ em nên trích ra các số quy luật, sau đó tính tổng rồi so sánh.

Như thế bài làm của em sẽ hay hơn.

AH
Akai Haruma
Giáo viên
21 tháng 8

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé. 

19 tháng 3 2016

a)Đặt A= \(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{8}\) - \(\frac{1}{16}\) + \(\frac{1}{32}\) - \(\frac{1}{64}\) => A=\(\frac{1}{2^1}\) - \(\frac{1}{2^2}\) + \(\frac{1}{2^3}\) - \(\frac{1}{2^4}\) + \(\frac{1}{2^5}\) - \(\frac{1}{2^6}\)

=> 2A= 1-\(\frac{1}{2^1}\) + \(\frac{1}{2^2}\) - \(\frac{1}{2^3}\) + \(\frac{1}{2^4}\) - \(\frac{1}{2^5}\) 

=> 3A= 1- \(\frac{1}{2^6}\) <1 => A<\(\frac{1}{3}\) => đpcm.

b) Đặt B=\(\frac{1}{3}\) - \(\frac{2}{3^2}\) + \(\frac{3}{3^3}\) - \(\frac{4}{3^4}\) +..+ \(\frac{99}{3^{99}}\) - \(\frac{100}{3^{100}}\) 

=> 3B=1-\(\frac{2}{3}\) + \(\frac{3}{3^2}\) - \(\frac{4}{3^3}\) +...+\(\frac{99}{3^{98}}\) - \(\frac{100}{3^{99}}\)

=> 4B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) - \(\frac{100}{3^{99}}\) < 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) (1)

Đặt B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) 

=> 3B= 3-1+\(\frac{1}{3}\) - \(\frac{1}{3^2}\) + \(\frac{1}{3^3}\) - \(\frac{1}{3^4}\) +...+ \(\frac{1}{3^{98}}\)

=> 4B= 3-\(\frac{1}{3^{99}}\) <3 => B<\(\frac{3}{4}\) (2)

=> 4A<B<\(\frac{3}{4}\) => A<\(\frac{3}{16}\) => đpcm.