Chứng minh: n3 - 13n chia hết cho 6 với mọi số nguyên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = n3 – n (có nhân tử chung n)
= n(n2 – 1) (Xuất hiện HĐT (3))
= n(n – 1)(n + 1)
n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên
+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2
+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3
Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.
a) Gợi ý: phân tích 50 n + 2 - 50 n + 1 = 245.10. 50 n .
b) Gợi ý: phân tích n 3 - n = n(n - 1)(n +1).
n3 - 13n
= n3 - n - 12n
= n(n2 - 1) - 12n
= n(n - 1)(n + 1) - 12n
n(n - 1)(n + 1) chia hết cho 6 (tích của 3 số nguyên liên tiếp)
- 12n chia hết cho 6
Vậy n3 - 13n chia hết cho 6 (đpcm)
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
Lời giải:
Vì $n, n+1$ là hai số tự nhiên liên tiếp nên trong đó sẽ tồn tại 1 số chẵn và 1 số lẻ.
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow n(n+1)(13n+17)\vdots 2(*)$
Mặt khác:
Nếu $n$ chia hết cho 3 thì $n(n+1)(13n+7)\vdots 3$
Nếu $n$ chia 3 dư $1$: Đặt $n=3k+1$ thì:
$13n+17=13(3k+1)+17=39k+30=3(13k+10)\vdots 3$
$\Rightarrow n(n+10)(13n+17)\vdots 3$
Nếu $n$ chia 3 dư $2$. Đặt $n=3k+2$ thì:
$n+1=3k+3=3(k+1)\vdots 3$
$\Rightarrow n(n+1)(13n+17)\vdots 3$
Vậy $n(n+1)(13n+17)\vdots 3$ với mọi $n$ tự nhiên $(**)$
Từ $(*); (**)\Rightarrow n(n+1)(13n+17)\vdots 6$.
Đặt un = 13n – 1
+ Với n = 1 thì u1 = 13 – 1 = 12 chia hết 6
+ Giả sử: uk = 13k – 1 chia hết cho 6.
⇒ uk + 1 = 13k + 1 – 1
= 13k+1 + 13k – 13k – 1
= 13k(13 – 1) + 13k – 1
= 12.13k + uk.
Mà 12.13k ⋮ 6; uk ⋮ 6.
⇒ uk + 1 ⋮ 6.
⇒ un ⋮ 6 với mọi n ∈ N.
hay 13n – 1 ⋮ 6 với mọi n ∈ N.
Ta có n3 - n=n( n2-1)=(n-1)n(n+1)
Mà tích ba số tự nhiên liên tiếp nên chia hết cho 2 và 3 => chia hết cho 6
A = n3 – n (có nhân tử chung n)
= n(n2 – 1) (Xuất hiện HĐT (3))
= n(n – 1)(n + 1)
n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên
+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2
+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3
Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.
-Chanh-