K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Vì \(n-1,n,n+1\) là 3 số nguyên liên tiếp nên có 1 số chia hết cho 2,1 số chia hết cho 3

Mà (2,3)=1\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2.3=6\)

20 tháng 8 2016

Bài 1: \(\left(5n+2\right)^2-4=\left(25n^2+2.2.5n+2^2\right)-4=25n^2+20n+4-4\)

\(=25n^2+20n=5n\left(5n+4\right)\)

Có \(5n\left(5n+4\right)⋮5\) (có cơ số 5n)

=> \(\left(5n+2\right)^2-4⋮5\)

Bài 2: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Đây là tích ba số tự nhiên liên tiếp nên chia hết cho 3.

Vậy: \(n^3-n⋮3\)

Bài 3: \(x^2\left(x-3\right)+12-4x=0\)

\(\Leftrightarrow x^2\left(x-3\right)+4\left(3-x\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)

\(\Leftrightarrow x^2=4,x=3\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\\x=3\end{array}\right.\)

20 tháng 8 2016

Câu 1:

Ta có:(5n+2)2-4=25n2+20n+4-4

                         =5.5n2+5.4n

                         =5.(5n2+4n)

       Vì 5.(5n2+4n) chia hêt cho 5

Suy ra:(5n+2)2-4

Câu 2:

Ta có:

n3-n=n.n2-n

       =n.(n2-1)

      =(n-1).n.(n+1)

       Vì (n-1);n và (n+1) là ba số tự nhiên liên tiếp

 Mà (n-1).n.(n+1) chia hết cho 3(1)

              Và (n-1).(n+1) chia hêt cho 2(2)

Từ (1) và (2) suy ra:(n-1).n.(n+1) chia hết cho 6

 

18 tháng 10 2015

n^3 - n 
n(n^2 - 1) 
n(n - 1)(n + 1) 

Vì n, (n - 1), (n + 1) là ba số nguyên liên tiếp, trong đó, có 1 số chia hết cho 2, một số chia hết cho 3 nên tích 3 số chia hết cho 6 

=> n(n - 1)(n + 1) chia hết cho 6 
<=> (n^3 - n) chia hết cho 6

18 tháng 10 2015

Ta có : n3 - n = n . ( n2 - 1 )

                     = n . ( n -1 ) . ( n + 1 )

   Đây là tích 3 số tự nhiên liên tiếp => nó chia hết cho 2 ; 3

Vậy n3 - n chia hết cho 6 

12 tháng 7 2015

Ta có: n3-n=n.(n2-1)=n.(n-1).(n+1)=(n-1).n.(n+1)

Vì n-1,n và n+1 là 3 số tự nhiên liên tiếp.

=>(n-1).n.(n+1) chia hết cho 3(1)

Lại có: Vì n-1 và n là 2 số tự nhiên liên tiếp.

=>(n-1).n chia hết cho 2.

=>(n-1).n.(n+1) chia hết cho 2(2)

Từ (1) và (2) ta thấy.

(n-1).n.(n+1) chia hết cho 3 và 2.

mà (3,2)=1

=> (n-1).n.(n+1) chia hết cho 6.

Vậy n3-n chia hét cho 6 với mọi số tự nhiên n.

10 tháng 10 2017

x=120, y=90

10 tháng 7 2016

\(n^3-n=n\left(n^2-1\right)=\left(n-1\right).n.\left(n+1\right)\)

Vì (n-1).n.(n+1) là tích ba số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2,3) = 1 => n3-n chia hết cho 2x3=6 với mọi số nguyên n

29 tháng 9 2016

bài này dễ

29 tháng 9 2016

Ta có: n3-n = n(n2-1) = n(n+1)(n-1)

Vì (n-1)n(n+1) là 3 số nguyên liên tiếp nên (n-1)n(n+1) chia hết cho 3

Hay n3-n chia hết cho 3     (1)

Mặt khác : (n-1)n là 2 số nguyên liên tiếp nên (n-1)n(n+1) chia hết cho 2

Hay n3-n chia hết cho 2         (2) 

Từ (1) và (2) suy ra: n3-n chia hết cho 6

8 tháng 6 2017

Bài 2 chia đa thức cho đa thức ta được số dư là 6-a(7-2a)

 để đa thức 2x+ 7x + 6 chia hết cho x+a thì 6-a(7-2a)=0

=>6-7a+2a2=0

<=>2a2-4a-3a+6=0

<=>2a(a-2)-3(a-2)=0

<=>(a-2)(2a-3)=0

=> a=2 hoặc a=3/2

Vậy vớia=2 hoặc a=3/2 thì đa thức 2x+ 7x + 6 chia hết cho x+a

8 tháng 6 2017

bài 1

n lẻ nên đặt n=2k+1 (k thuộc Z)

Ta có n3-3n2-n+3=n2(n-3)-(n-3)

=(n-3)(n-1)(n+1)

=(2k+1-3)(2k+1-1)(2k+1+1)

=2k(2k+2)(2k-2)

=8.(k-1).k.(k+1)

Vì (k-1).k.(k+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3 mà (2;3)=1 nên chia hết cho 6 

Ta có 48=6.8 nên 8.k(k+1)(k-1) chia hết cho 48 hay n3-3n2-n+3chia hết cho 48

4 tháng 8 2015

6=2x3

n3-n=n(n2-1)=n(n-1)(n+1) 

Vì n(n+1)(n-1) là tích của 3 số liên tiếp , chắc chắn chứa bội số của 2 và 3

Nên n3-1 chia hết cho 6

19 tháng 1 2018

Ta có :

\(n\equiv0,1,2,3,4,5\left(mod6\right)\)

\(\Rightarrow n^3\equiv0^3,1^3,2^3,3^3,4^3,5^3\left(mod6\right)\)

\(\Rightarrow n^3\equiv0,1,8,27,64,125\left(mod6\right)\)

\(\Rightarrow n^3\equiv1,2,3,4,5,0\left(mod6\right)\)

\(\Rightarrow n^3-n\equiv0\left(mod6\right)\forall n\)

27 tháng 3 2016

1,

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)