Tìm \(x\in N\)biết
a)\(2.x^x=10.3^{12}+8.27^4\)
b)\(3^{2x+2}=9^{x+3}\)
c)\(100< 5^{2x-1}< 5^6\)
d)\(3^x+3^{x+1}+3^{x+2}=1053\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^{2x}.2^4=1024\)
\(2^{2x}=1024:2^4\)
\(2^{2x}=1024:16\)
\(2^{2x}=64\)
\(2^{2x}=2^6\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
vay \(x=3\)
b) \(2.3^x=10.3^{12}+8.27^4\)
\(2.3^x=2.5.3^{12}+2^3.\left(3^3\right)^4\)
\(2.3^x=2.5.3^{12}+2^3.3^{12}\)
\(2.3^x=2.3^{12}.\left(5+2^2\right)\)
\(2.3^x=2.3^{12}.9\)
\(2.3^x=2.3^{12}.3^2\)
\(2.3^x=2.3^{14}\)
\(\Rightarrow x=14\)
vay \(x=14\)
c) \(5^8.25^x+1=5^{17}\)
\(5^8.\left(5^2\right)^x+1=5^{17}\)
\(5^8.5^{2x}+1=5^{17}\)
\(5^{8+2x}=5^{17}-1\)
e) \(\left(2x-4\right)^5=\left(2x-4\right)^3\)
\(\left(2x-4\right)^5-\left(2x-4\right)^3=0\)
\(\left(2x-4\right)\left[\left(2x-4\right)^2-1\right]=0\)
\(\left(2x-4\right)\left(2x-4-1\right)\left(2x-4+1\right)=0\)
\(\left(2x-4\right)\left(2x-5\right)\left(2x-3\right)=0\)
\(\Rightarrow2x-4=0\)hoac \(\orbr{\begin{cases}2x-5=0\\2x-3=0\end{cases}}\)
\(\Rightarrow2x=4\)hoac \(\orbr{\begin{cases}2x=5\\2x=3\end{cases}}\)
\(\Rightarrow x=2\)hoac \(\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{3}{2}\end{cases}}\)
vay \(x=2\)hoac \(\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{3}{2}\end{cases}}\)
tìm số tự nhiên x biết
a)2^x-15=17
b)(7^x-11)^3=2^5.5^2+200
c)2.3^x=10.3^12+8.27^4
d)(2x-150^5=(2x-15)^3
2\(^x\)- 15 = 17
\(\Rightarrow\)2\(^x\) = 32
\(\Rightarrow\)x = 5
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
Số số hạng là :
(2x - 2) : 2 + 1 = x - 1 + 1 = x (số)
Tổng là :
(2x + 2).x : 2 = 210
=> (2x2 + 2x) : 2 = 210
=> x2 + x = 210
=> x(x + 1) = 210
=> x(x + 1) = 20.21
=> x = 20
Vậy x = 20
Ta có : \(\frac{x}{2}=\frac{10}{x+1}\)
=> x(x + 1) = 10.2
=> x(x + 1) = 20
=> sai đề
b: =>4x^2+8x-8x^2+5x-10=0
=>-4x^2+13x-10=0
=>x=2 hoặc x=5/4
c: =>2x^2-5x+6x-15=2x^2+8x
=>x-15=8x
=>-7x=15
=>x=-15/7
d: =>3x^2+15x-2x-10-3x^2-12x=5
=>x-10=5
=>x=15
e: =>x^2-3x+2x^2+2x=3x^2-12
=>-x=-12
=>x=12
Lời giải:
a. ĐKXĐ: $x\geq -9$
PT $\Leftrightarrow x+9=7^2=49$
$\Leftrightarrow x=40$ (tm)
b. ĐKXĐ: $x\geq \frac{-3}{2}$
PT $\Leftrightarrow 4\sqrt{2x+3}-\sqrt{4(2x+3)}+\frac{1}{3}\sqrt{9(2x+3)}=15$
$\Leftrightarrow 4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15$
$\Leftrgihtarrow 3\sqrt{2x+3}=15$
$\Leftrightarrow \sqrt{2x+3}=5$
$\Leftrightarrow 2x+3=25$
$\Leftrightarrow x=11$ (tm)
c.
PT \(\Leftrightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-6x+9=(2x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+10x-8=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (3x-2)(x+4)=0\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{2}{3}\)
d. ĐKXĐ: $x\geq 1$
PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}-\sqrt{(x-1)+6\sqrt{x-1}+9}=9\)
\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}-\sqrt{(\sqrt{x-1}+3)^2}=9\)
\(\Leftrightarrow \sqrt{x-1}+2-(\sqrt{x-1}+3)=9\)
\(\Leftrightarrow -1=9\) (vô lý)
Vậy pt vô nghiệm.
a, \(2.x^x=10.3^{12}+8.27^4\)
\(2.x^x=10.3^{12}+8.3^{12}\)
\(2.x^x=3^{12}.\left(10+8\right)\)
\(2.x^x=3^{12}.18\)
\(2.x^x=3^{12}.2.3^3\)
\(2.x^x=3^{15}.2\)
\(x^x=3^{15}\)( Hình như sai đề )
b,\(3^{2x+2}=9^{x+3}\)
\(3^{2x+2}=3^{2x+3}\)
câu b Sai đề