cho tam giác MNA có MN<MA . Gọi E,F lần lượt là trung điểm của MN,MA
a, Vẽ hình và tính độ dài đoản thẳng NA nếu EF= 5cm.
b, giả sử độ dài đoản thẳng NA là nghiệm của đa thức F(x) = 4x - 10. Khi đó hãy tính EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNA và ΔMPA có
MN=MP
NA=PA
MA chung
=>ΔMNA=ΔMPA
b: ΔMNP cân tại M
mà MA là trung tuyến
nên MA là phân giác của góc NMP
c: ΔMNP cân tại M
mà MA là trung tuyến
nên MA vuông góc NP
d: DN=DP
nên D nằm trên trung trực của NP
mà MA là trung trực của NP
nên M,A,D thẳng hàng
Xét tam giác MNA và tam giác MPN ta có :
^M _ chung
\(\frac{MN}{MP}=\frac{MA}{MN}=\frac{6}{9}=\frac{4}{6}=\frac{2}{3}\)
Vậy tam giác MNA ~ tam giác MPN ( c.g.c )
=> ^MNA = ^MPN ( 2 góc tương ứng )
Ta có:
NA là tia phân giác \(\widehat{MNP}\)=>\(\widehat{ANM}=\frac{\widehat{MNP}}{2}\)
PB là tia phân giác \(\widehat{MPN}\)=>\(\widehat{BPM}=\frac{\widehat{MPN}}{2}\)
Mà \(\widehat{MNP}=\widehat{MPN}\)(tam giác MNP cân tại M)
=>\(\widehat{ANB}=\widehat{MPB}\)
Xét tam giác MAN và tam giác MBP có:
Góc M chung
MN=MP(tam giác MNP cân tạ M)
Góc ANM=góc MPB(cmt)
=>tam giác MPB=tam giác MNA
a: Xét ΔMQN và ΔMQP có
MQ chung
QN=QP
MN=MP
=>ΔMQN=ΔMQP
b: Xét ΔMNA và ΔMBP có
MN=MP
góc N=góc P
NA=PB
=>ΔMNA=ΔMBP
a: Xét ΔABM và ΔNCM có
MA=MN
góc AMB=góc NMC
MB=MC
=>ΔABM=ΔNCM
=>góc ABM=góc NCM
=>AB//NC
b: Xét ΔABC vuông tại A và ΔCNA vuông tại C có
CA chung
AB=CN
=>ΔABC=ΔCNA
c: AM=BC/2=4cm
ai giup mik dc ko lam on :(