Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔABH=ΔACH
b: Xet ΔAHM và ΔNBM có
MA=MN
góc AMH=góc NMB
HM=MB
=>ΔAMH=ΔNMB
=>góc NBM=90 độ
=>NB vuông góc BC
c: BN=AH
AH<AB
=>BN<BA
=>góc BAN<góc BNA
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
c: Sửa đề: Trên tia đối của tia MA lấy D sao cho MA=MD
Xét ΔMAB vuông tại M và ΔMDC vuông tại M có
MA=MD
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
a: Xét tứ giác ABNC có
M là trung điểm của BC
M là trung điểm của AN
Do đó: ABNC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABNC là hình chữ nhật
Suy ra: AB=NC và ΔCAN vuông tại C
b: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=1/2BC
a) Xét tam giác MAB và tam giác MCN có
MB =MC ( M là tđ BC)
AM =AN (gt)
AMB = CMD ( 2 góc đối đỉnh )
=> 2 tam giác = nhau (c-g-c)
=> AB =NC (2 cạnh tương ứng)
=> góc BAN = góc ANC (2 góc tương ứng)
mà 2 góc ở vị trí so le trong => AB // NC
=> A + C = 180 ( 2 góc trong cùng phía bù nhau)
=> 90 + c = 180 => góc C=90
xét tam giác ACN có góc C =90 => tma giác ACN vuông tại C
b) Xét tam giác ABC vuông tại A có M là trung điểm BC => AM là trung tuyến => AM = BM = CM =1/2 BC(tc)
c) ta xét tam giác BAN có : AM =MN => M là trung điểm của AN => BM là trung tuyến của AN
mà BM = AM (cmt ) => BM=AM=MN=1/2AN
=> tam giác ABN vuông tại B => AB vuông góc với BN
mà MK vuông góc với BN (gt)=> AB // MK ( từ vuông góc -> //)
mà AB vuông góc AC => MK vuông góc với AC (từ vuông góc -> //)
ta lại có MI cũng vuông góc với AC (gt)
=> M,K,I thẳng hàng (tiên đề ơ clits)
a: Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMEC
=>AB=EC
Ta có: ΔMAB=ΔMEC
=>\(\widehat{MAB}=\widehat{MEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CE
b: Ta có: AB//CE
AB\(\perp\)AC
Do đó: CE\(\perp\)CA
=>ΔCAE vuông tại C
c: Xét ΔABC vuông tại A và ΔCEA vuông tại C có
CA chung
AB=CE
Do đó: ΔABC=ΔCEA
d: ta có: ΔABC=ΔCEA
=>BC=EA
mà \(AM=\dfrac{1}{2}EA\)
nên \(AM=\dfrac{1}{2}BC\)
e: Xét ΔMAC và ΔMEB có
MA=ME
\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMEB
=>\(\widehat{MAC}=\widehat{MEB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BE
f: Xét ΔMHC và ΔMKB có
MB=MC
\(\widehat{MBK}=\widehat{MCH}\)
BK=CH
Do đó: ΔMHC=ΔMKB
=>\(\widehat{HMC}=\widehat{KMB}\)
mà \(\widehat{KMB}+\widehat{KMC}=180^0\)(hai góc kề bù)
nên \(\widehat{HMC}+\widehat{KMC}=180^0\)
=>K,M,H thẳng hàng
a) Ta có M là trung điểm của BC, vậy BM = MC. Vì MA = ME, nên ta có MA = ME = MC. Do đó, tam giác MEC là tam giác đều.
Vì BM = MC và tam giác MEC là tam giác đều, nên ta có AB = EC và AB // EC.
b) Vì tam giác ABC là tam giác vuông tại A, nên góc BAC = 90 độ.
Vì AB // EC, nên góc BAC = góc ECA.
Vậy tam giác ACE cũng là tam giác vuông tại C.
c) Tam giác ABC và tam giác CEA có cạnh chung AC và góc AEC = góc BAC = 90 độ (vì tam giác ABC là tam giác vuông tại A).
Vậy theo trường hợp góc - cạnh - góc, ta có tam giác ABC và tam giác CEA là hai tam giác đồng dạng.
d) Ta đã biết M là trung điểm của BC, vậy BM = MC.
Vì MA = ME, nên MA = MC/2.
Do đó, AM = 1/2 BC.
e) Ta đã biết AB = EC và AB // EC.
Vì MA = ME, nên MA = MC.
Vậy theo trường hợp cạnh - góc - cạnh, ta có tam giác MAC và tam giác MEC là hai tam giác đồng dạng.
Vậy AC = BE và AC // BC.
f) Trên BE lấy K, trên AC lấy H sao cho BK = CH.
Vì M là trung điểm của BC, nên MK = MC/2.
Vì tam giác MEC là tam giác đều, nên góc MCE = 60 độ.
Vậy góc MCK = 60 độ.
Vì BK = CH, nên góc BKC = góc CHB.
Vậy góc BKC = góc CHB = 60 độ.
Vậy tam giác BKC và tam giác CHB là hai tam giác đều.
Vậy 3 điểm K, M, H thẳng hàng.
chiu bo tay cham com
bài này mà cũng o biet lam