Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác MHN và tam giác MHP có
\(\widehat{MHN}\) = \(\widehat{MHP}\)(= 90 ĐỘ)
MN = MP ( tam giác MNP cân tại M)
MH chung
=> tam giác MHN = tam giác MHP (cạnh huyền cạnh góc vuông)
b) vì tam giác MHN = tam giác MHP (câu a)
=> \(\widehat{M1}\)= \(\widehat{M2}\)(2 góc tương ứng)
=> MH là tia phân giác của \(\widehat{NMP}\)
bạn tự vẽ hình nhé
a.
vì tam giác MNP cân tại M=> MN=MP và \(\widehat{N}\)=\(\widehat{P}\)
Xét tam giác MHN và tam giác MHP
có: MN-MP(CMT)
\(\widehat{N}\)=\(\widehat{P}\)(CMT)
MH là cạnh chung
\(\widehat{MHN}\)=\(\widehat{MHP}\)=\(^{90^0}\)
=> Tam giác MHN= Tam giác MHP(ch-gn)
=> \(\widehat{NMH}\)=\(\widehat{PMH}\)(2 GÓC TƯƠNG ỨNG) (1)
và NH=PH( 2 cạnh tương ứng)
mà H THUỘC NP=> NH=PH=1/2NP (3)
b. Vì H năm giữa N,P
=> MH nằm giữa MN và MP (2)
Từ (1) (2)=> MH là tia phân giác của góc NMP
c. Từ (3)=> NH=PH=1/2.12=6(cm)
Xét tam giác MNH có Góc H=90 độ
=>\(MN^2=NH^2+MH^2\)( ĐL Py-ta-go)
hay \(10^2=6^2+MH^2\)
=>\(MH^2=10^2-6^2\)
\(MH^2=64\)
=>MH=8(cm)
a: Xét ΔMNE vuông tại E và ΔKNE vuông tại E có
NE chung
góc MNE=góc KNE
=>ΔMNE=ΔKNE
b: Xét ΔNMD và ΔNKD có
NM=NK
góc MND=góc KND
ND chung
=>ΔNMD=ΔNKD
=>góc NKD=90 độ
=>DK vuông góc NP
a: Xét ΔMPA vuông tại P và ΔMHA vuông tại H có
MA chung
\(\widehat{PMA}=\widehat{HMA}\)
Do đó: ΔMPA=ΔMHA
Suy ra: MP=MH
b: Xét ΔMNP vuông tại P và ΔMBH vuông tại H có
MP=MH
\(\widehat{PMN}\) chung
Do đó: ΔMNP=ΔMBH
a: Xét ΔMNQ vuông tại M và ΔHNQ vuông tại H có
NQ chung
\(\widehat{MNQ}=\widehat{HNQ}\)
Do đó: ΔMNQ=ΔHNQ
b: ta có: ΔMNQ=ΔHNQ
nên NM=NH
hay ΔNHM cân tại N
mà \(\widehat{MNH}=60^0\)
nên ΔNHM đều
a) Ta có: góc BAD = góc DAH (AD là phân giác góc BAH).
Mà góc DAC = 900 - góc BAD; góc ADC = 900 - góc DAH.
=> Góc DAC = Góc ADC.
=> Tam giác ADC cân tại C.
b) Ta có: CK = CB (gt) => Tam giác CKB cân tại C.
Góc K = (180o - Góc A) : 2.
Mà Góc CAD = (180o - Góc A) : 2.
=> Góc K = Góc CAD.
Mà 2 góc này ở vị trí đồng vị.
=> BK // AD (đpcm).
a: Xét ΔMQN và ΔMQP có
MQ chung
QN=QP
MN=MP
=>ΔMQN=ΔMQP
b: Xét ΔMNA và ΔMBP có
MN=MP
góc N=góc P
NA=PB
=>ΔMNA=ΔMBP