K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

a) Xét (O) có 

AM là tiếp tuyến có M là tiếp điểm(gt)

AN là tiếp tuyến có N là tiếp điểm(gt)

Do đó: AM=AN; OM=ON(Tính chất hai tiếp tuyến cắt nhau)

Ta có: AM=AN(cmt)

nên A nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OM=ON(cmt)

nên O nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AO là đường trung trực của MN

hay AO⊥MN(đpcm)

b) Xét (O) có 

ΔMNC nội tiếp đường tròn(C,M,N∈(O))

NC là đường kính

Do đó: ΔMNC vuông tại M(Định lí)

⇒MN⊥MC

Ta có: MN⊥MC(cmt)

MN⊥AO(cmt)

Do đó: MC//AO(Định lí 1 từ vuông góc tới song song)

c) Áp dụng định lí Pytago vào ΔOMA vuông tại M, ta được:

\(OA^2=OM^2+MA^2\)

\(\Leftrightarrow AM^2=OA^2-OM^2=5^2-3^2=16\)

hay \(AM=\sqrt{16}=4cm\)

mà AM=AN(cmt)

nên AN=4cm

Gọi H là giao điểm của MN và AO

mà MN⊥AO tại trung điểm của MN

nên H là trung điểm của MN và MH⊥AO tại H

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAMO vuông tại M, ta được:

\(MH\cdot AO=MO\cdot MA\)

\(\Leftrightarrow MH\cdot5=4\cdot3=12\)

hay MH=2,4cm

mà \(MN=2\cdot MH\)(H là trung điểm chung của MN)

nên \(MN=2\cdot2.4=4.8cm\)

Chu vi tam giác AMN là: 

\(C=AM+AN+MN=5+5+4.8=14.8cm\)

26 tháng 12 2021

undefined

24 tháng 6 2017

a) ta có : AN = AM (tính chất tiếp tuyến)

\(\Rightarrow\) tam giác AMN cân tại A

OA là tia phân giác cũng là đường cao

\(\Rightarrow\) OA \(\perp\) MN (đpcm)

24 tháng 6 2017

b) đặc H là giao điểm của MN và AO

ta có MH = HN (OA \(\perp\) MN \(\Rightarrow\) H là trung điểm MN)

mà CO = CN = R

\(\Rightarrow\) OH là đường trung bình của tam giác MNC

\(\Rightarrow\) OH // MC \(\Leftrightarrow\) MC // OA (đpcm)

1 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

Bài tập Tất cả

1 tháng 8 2023

a

Theo giả thiết có:

`AB=AC`

`OB=OC`

=> AO là đường trung trực của đoạn BC

=> AO⊥BC

b

Ta có:

`OB=OC=R`

Gọi điểm giao nhau của BC và OA là H có:

`HB=HC`

Từ trên suy ra: HO là đường trung bình của ΔCDB

=> HO//BD

=> OA//BD (H nằm trên đoạn OA)

 

1 tháng 8 2023

c

AB là tiếp tuyến đường tròn.

=> OB⊥AB

Lại có: BH⊥OA (cmt)

Áp dụng hệ thức lượng vào tam giác OAB vuông tại B, đường cao BH có:

\(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{OB^2}\\ \Leftrightarrow\dfrac{1}{BH^2}=\dfrac{1}{8^2}+\dfrac{1}{6^2}\\ \Rightarrow BH=\sqrt{1:\left(\dfrac{1}{8^2}+\dfrac{1}{6^2}\right)}=\dfrac{24}{5}=4,8\left(cm\right)\)

\(BC=2BH\left(BH=HC\right)\\ \Rightarrow BC=2.4,8=9,6\left(cm\right)\)

1 tháng 12 2023

O A B M H C D K F I

a/

Xét tg vuông AMO và tg vuông BMO có

MA=MB (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn)

OA=OB=R

=> tg AMO = tg BMO (2 tg vuông có 2 cạnh góc vuông bằng nhau)

\(\Rightarrow\widehat{AMO}=\widehat{BMO}\)

Xét tg MAB có

MA=MB (cmt) => tg MAB cân tại M

\(\widehat{AMO}=\widehat{BMO}\) (cmt)

\(\Rightarrow OM\perp AB\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)

Xét tg vuông AMO có

\(AM^2=MO.MH\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

b/

Ta có \(\widehat{ADC}=90^o\) (góc nt chắn nửa đường tròn) => tg ACD vuông tại D \(\Rightarrow AD\perp MC\)

Xét tg vuông AMC có

\(AM^2=MD.MC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Ta có

\(AM^2=MO.MH\) (cmt)

\(\Rightarrow MH.MO=MD.MC\)

c/ Xét tg AMK có

\(OM\perp AB\left(cmt\right)\Rightarrow OH\perp AK\)

\(AD\perp MC\left(cmt\right)\Rightarrow AD\perp MK\)

\(\Rightarrow KI\perp AB\) (trong tg 3 đường cao đồng quy)

Phần còn lại không biết điểm E là điểm nào?

 

 

a: Xét (O) có

AM,AN là tiếp tuyến

nên AM=AN

mà OM=ON

nên OA là trung trực của MN

b: Xet (O) có

ΔMNE nội tiếp

ME là đườngkính

=>ΔMNE vuông tại N

=>NE//OA