K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2023

c: Xét (O) có

ΔMKD nội tiếp

MD là đường kính

Do đó: ΔMKD vuông tại K

=>MK\(\perp\)KD tại K

=>MK\(\perp\)AD tại K

Xét ΔMDA vuông tại M có MK là đường cao

nên \(AK\cdot AD=AM^2\left(1\right)\)

Xét ΔAOM vuông tại M có MH là đường cao

nên \(AH\cdot AO=AM^2\left(2\right)\)

Từ (1) và (2) suy ra \(AK\cdot AD=AH\cdot AO\)

12 tháng 12 2021

undefinedundefined

10 tháng 6 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Ta có: AB = AC (tính chất của hai tiếp tuyến cắt nhau). Nên ΔABC cân tại A.

Lại có AO là tia phân giác của góc A nên AO ⊥ BC. (trong tam giác cân, đường phân giác cũng là đường cao)

b) Gọi I là giao điểm của AO và BC. Suy ra BI = IC (đường kính vuông góc với một dây).

Xét ΔCBD có :

CI = IB

CO = OD (bán kính)

⇒ BD // HO (HO là đường trung bình của BCD) ⇒ BD // AO.

c) Theo định lí Pitago trong tam giác vuông OAC:

A C 2   =   O A 2   –   O C 2   =   4 2   –   2 2   =   12

=> AC = √12 = 2√3 (cm)

Để học tốt Toán 9 | Giải bài tập Toán 9

Do đó AB = BC = AC = 2√3 (cm).

24 tháng 6 2017

a) ta có : AN = AM (tính chất tiếp tuyến)

\(\Rightarrow\) tam giác AMN cân tại A

OA là tia phân giác cũng là đường cao

\(\Rightarrow\) OA \(\perp\) MN (đpcm)

24 tháng 6 2017

b) đặc H là giao điểm của MN và AO

ta có MH = HN (OA \(\perp\) MN \(\Rightarrow\) H là trung điểm MN)

mà CO = CN = R

\(\Rightarrow\) OH là đường trung bình của tam giác MNC

\(\Rightarrow\) OH // MC \(\Leftrightarrow\) MC // OA (đpcm)

26 tháng 12 2022

AB=AC (tính chất 2 tiếp tuyến cắt nhau)

⇒ΔABC cân đỉnh A có AO là phân giác cũng là đường cao

⇒AO⊥BC

 

b) ΔBCD nội tiếp đường tròn (O) đường kính CD

⇒BCD⊥B⇒BD⊥BC

⇒AO∥BD (vì cùng ⊥BC)

 

c) Gọi AO∩BC=H

Áp dụng định lý Pitago vào ΔABO có:

AB2=AO2−OB2=42−22=12

⇒AB=23=AC

Hệ thức lượng vào Δ vuông ABO

1BH2=1AB2+1BO2=112+122=13

⇒BH=3⇒BC=2BH=23.

Có thể soai ai bt dc

10 tháng 12 2020

a) Xét (O) có 

AM là tiếp tuyến có M là tiếp điểm(gt)

AN là tiếp tuyến có N là tiếp điểm(gt)

Do đó: AM=AN; OM=ON(Tính chất hai tiếp tuyến cắt nhau)

Ta có: AM=AN(cmt)

nên A nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OM=ON(cmt)

nên O nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AO là đường trung trực của MN

hay AO⊥MN(đpcm)

b) Xét (O) có 

ΔMNC nội tiếp đường tròn(C,M,N∈(O))

NC là đường kính

Do đó: ΔMNC vuông tại M(Định lí)

⇒MN⊥MC

Ta có: MN⊥MC(cmt)

MN⊥AO(cmt)

Do đó: MC//AO(Định lí 1 từ vuông góc tới song song)

c) Áp dụng định lí Pytago vào ΔOMA vuông tại M, ta được:

\(OA^2=OM^2+MA^2\)

\(\Leftrightarrow AM^2=OA^2-OM^2=5^2-3^2=16\)

hay \(AM=\sqrt{16}=4cm\)

mà AM=AN(cmt)

nên AN=4cm

Gọi H là giao điểm của MN và AO

mà MN⊥AO tại trung điểm của MN

nên H là trung điểm của MN và MH⊥AO tại H

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAMO vuông tại M, ta được:

\(MH\cdot AO=MO\cdot MA\)

\(\Leftrightarrow MH\cdot5=4\cdot3=12\)

hay MH=2,4cm

mà \(MN=2\cdot MH\)(H là trung điểm chung của MN)

nên \(MN=2\cdot2.4=4.8cm\)

Chu vi tam giác AMN là: 

\(C=AM+AN+MN=5+5+4.8=14.8cm\)

21 tháng 1 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: AM = AN (tính chất hai tiếp tuyến cắt nhau)

Suy ra tam giác AMN cân tại A

Mặt khác AO là đường phân giác của góc MAN (tính chất hai tiếp tuyến cắt nhau)

Suy ra AO là đường cao của tam giác AMN (tính chất tam giác cân)

Vậy OA ⊥ MN.