Biết \(x=x_0\left(x_0\ne0\right)\)là một nghiệm của phương trình \(ax^2+bx+3=0\). Phương trình nào sau đây có nghiệm là \(x=\frac{1}{x_0}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a^2+b^2+c^2+1\right)x=ab+bc+ca\)
\(\Leftrightarrow x=\dfrac{ab+bc+ca}{a^2+b^2+c^2+1}\)
Ta có:
\(x^2-1=\dfrac{\left(ab+bc+ca\right)^2}{\left(a^2+b^2+c^2+1\right)^2}-1=\dfrac{\left(ab+bc+ca-a^2-b^2-c^2-1\right)\left(ab+bc+ca+a^2+b^2+c^2+1\right)}{\left(a^2+b^2+c^2+1\right)^2}\)
\(=\dfrac{\left[-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2-2\right]\left[\left(a+b+c\right)^2+a^2+b^2+c^2+2\right]}{4\left(a^2+b^2+c^2+1\right)^2}< 0\)
\(\Rightarrow x^2-1< 0\Rightarrow\left|x\right|< 1\)
Giả sử phương trình \(x^5-x^3+x-2=0\) có nghiệm thực \(x_0\). CMR :
\(\sqrt[6]{3}< x_0< \sqrt[6]{4}\)
Vì 1/2<>1/3
nên hệ luôn có nghiệm duy nhất
x+y=2 và 2x+3y=m
=>2x+2y=4 và 2x+3y=m
=>-y=4-m và x+y=2
=>y=m-4 và x=2-y=2-m+4=6-m
x+2y<5
=>6-m+2m-8<5
=>m-2<5
=>m<7
=>Có 6 số nguyên dương thỏa mãn
ĐỀ bài em sai nhé
Cho \(f\left(x\right)=ax^{2^{ }}+bx+c\)
suy ra \(f\left(x_0\right)=0\Rightarrow f\left(x_0\right)=ax_0^{2^{ }}+bx_0+c=0\)
\(g\left(x\right)=cx^{2^{ }}+bx+a\Rightarrow g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a\)
\(\Rightarrow g\left(\frac{1}{x_0}\right)=\frac{c}{x_0^2}+\frac{b}{x_0}+a=\frac{c+bx_0+ax^2_0}{x_0^2}=\frac{f\left(x_0\right)}{x_0^2}=0\) (với x0 khác 0)
2.f(x)=x^2+4x+10=x^2+4x+4+6=(x+2)^2+6
Mà(x+2)^2>=0=>(x+2)^2+6>0=>f(x) vô nghiệm
ahhii
Nếu x0 là nghiệm của f(x) thì a.x0+b=0 =>x0=-b/a
Để g(x)=0 thì bx+a=0
bx=-a
x=-a/b=1:(-b/a)=1/x0
=>Nghiệm của g(x) là 1/x0
Vậy nếu x0 là nghiệm của f(x) thì 1/x0 là nghiệm của g(x)