K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2017

\(\Leftrightarrow x^2+y^2+z^2-xy-3y-2z=-4\)

\(\Leftrightarrow\left(x^2+\dfrac{y^2}{4}-xy\right)+\dfrac{3}{4}\left(y^2-4y+4\right)+\left(z^2-2z+1\right)=-4+4=0\)

\(\Leftrightarrow\left(x-\dfrac{y}{2}\right)^2+\dfrac{3}{4}\left(y-2\right)^2+\left(z-1\right)^2=0\)

\(\left\{{}\begin{matrix}z_o-1=0\\y_o-2=0\\x_o-\dfrac{y_o}{2}=0\\\end{matrix}\right.\) \(\left\{{}\begin{matrix}2z_o=2\\3y_o=6\\2x_o-y_o=0\\2\left(x_o+y_o+z_o\right)=8\end{matrix}\right.\) \(\Rightarrow x_o+y_o+z_o=4\)

3 tháng 3 2017

ta có: \(x^2+y^2+z^2-xy-3y-2z+4=0\)

\(\left(x^2-xy+\dfrac{1}{4}y^2\right)+\left(\dfrac{3}{4}y^2-3y+3\right)+\left(z^2-2z+1\right)=0\)

\((x-\dfrac{1}{2}y)^2+3\left(\dfrac{1}{2}y-1\right)^2+\left(z-1\right)^2=0\)

giải 3 bình phương để bằng 0 được x=1;y=2;z=1

13 tháng 2 2020

\(-4x+7=-1\)

\(\Leftrightarrow-4x=-8\)

\(\Leftrightarrow x=2\)

Vậy phương trình có tập nghiệm \(S=\left\{2\right\}\)

\(\frac{\left(3x+2\right)\left(x+2\right)}{2}-\frac{3}{2}\left(x+1\right)^2=\frac{x-1}{2}\)

\(\Leftrightarrow3x^2+2x+6x+4-3\left(x^2+2x+1\right)=x-1\)

\(\Leftrightarrow3x^2+2x+6x+4-3x^2-6x-3-x+1=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy pt đã cho có nghiệm \(x=-2\)

13 tháng 2 2020

Trl 

-Bạn đó làm đúng rồi nhé ~!

Hok tốt 

nhé bạn

2 tháng 3 2016

-3 nha bạn ^_^

Các bạn ơi ! Giúp mik với.....B1: Xác định m để phương trình sau có hai nghiệm , nghiệm này bằng hai lần nghiệm kia: \(^{x^2-2\left(m-2\right)x-4m=0}\)B2: Tìm m để phương trình sau có nghiệm âm: \(\frac{1-x}{m-1}-\frac{x+1}{1+m}=\frac{2x+5}{1-m^2}\left(m\ne\pm1\right)\)B3: Giải và biện luận phương trình: \(\frac{ax-1}{4}-\frac{2\left(x-a\right)}{3}=\frac{a+4}{6}\)B4: Cho a,b,c là ba cạnh của một tam giác chứng minh rằng : \(1<...
Đọc tiếp

Các bạn ơi ! Giúp mik với.....

B1: Xác định m để phương trình sau có hai nghiệm , nghiệm này bằng hai lần nghiệm kia: \(^{x^2-2\left(m-2\right)x-4m=0}\)

B2: Tìm m để phương trình sau có nghiệm âm: \(\frac{1-x}{m-1}-\frac{x+1}{1+m}=\frac{2x+5}{1-m^2}\left(m\ne\pm1\right)\)

B3: Giải và biện luận phương trình: \(\frac{ax-1}{4}-\frac{2\left(x-a\right)}{3}=\frac{a+4}{6}\)

B4: Cho a,b,c là ba cạnh của một tam giác chứng minh rằng : \(1< \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
B5: Cho phương trình : \(\left(m^2-4\right)x+2=m\left(1\right)\)

       Với điều kiện nào của m thì phương trình (1) là một phương trình bậc nhất . Tìm nghiệm của phương trình trên với tham số là m.

 

Ai làm đúng thì mình tích cho nhé !!! Mik cân gấp các bạn nào có cách giải nào thì trả lời nhé !!!! Nghỉ Tết mà nhiều bài quá :)) :v 

0
24 tháng 1 2018

Bài 1: 

\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)

\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)

\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)

\(\Leftrightarrow x+66=0\)

\(\Leftrightarrow x=-66\)

b) \(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)

\(\Leftrightarrow m^2x-4x=m^2+4m+4\)

\(\Leftrightarrow\left(m^2-4\right)x=m^2+4m+4\)

Để phương trình vô nghiệm thì \(\hept{\begin{cases}m^2-4=0\\m^2+4m+4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=2\vee m=-2\\\left(m+2\right)^2\ne0\end{cases}}\Leftrightarrow m=2\)