K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2022

a: Gọi G là giao của AC và DN

=>G là trung điểm của DN

Xét ΔCBA có

D là trung điểm của CB

DG//AB

Do đó: G là trung điểm của AC

Xét tứ giác ADCN có

G là trung điểm chung của AC và DN

nên ADCN là hình bình hành

mà DA=DC

nen ADCN là hình thoi

b: Xét tứ giác ABDN có

DN//AB

DN=AB

DO đó: ABDN là hình bình hành

d: B đối xứng với M qua AC

nên AC vuông góc với MB tại trung điểm của MB

=>A là trung điểm của MB

=>ΔCMB cân tại C

Xét tứ giác NDAM có

ND//MA

ND=AM

DO đó: NDAM là hìnhbình hành

=>NA cắt DM tại trung điểm của mỗi đường

22 tháng 10 2017

wwwwwwwwwwwwwwwwwwwwwwwwww

12 tháng 12 2021

\(a,\) Vì M là trung điểm ND và BC nên BDCN là hình bình hành

\(b,\) Vì BDCN là hình bình hành nên \(BD\text{//}NC\) hay \(BD\text{//}NA\) và \(BD=NC=NA\) (N là trung điểm AC)

Do đó ABDN là hình bình hành

Mà \(\widehat{BAC}\equiv\widehat{NAB}=90^0\) nên ABDN là hình chữ nhật

\(c,\) Kẻ đường cao AH

\(\Rightarrow\left\{{}\begin{matrix}S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AH.2BM=AH.BM\\S_{ABM}=\dfrac{1}{2}AH.BM\end{matrix}\right.\\ \Rightarrow\dfrac{S_{ABM}}{S_{ABC}}=\dfrac{AH.BM}{2AH.BM}=\dfrac{1}{2}\\ \Rightarrow S_{ABC}=2S_{ABM}\)

12 tháng 12 2021

Em cảm ơn ạ 

19 tháng 11 2017

Các bạn ơi sửa đề bài chỗ M là điểm đối xứng D qua AC thành N đối xứng D qua AC nhess. Cảm ơn rất nhiều ạ

26 tháng 1 2022

a) AM là trung tuyến (gt). => M là trung điểm của BC.

=> BM = MC =  \(\dfrac{1}{2}\) BC.

Xét tứ giác AMBN:

I là trung điểm của AB (gt).

I là trung điểm của NM (N là điểm đối xứng với M qua I).

=> Tứ giác AMBN là hình bình hành (dhnb). 

=> AN = BM và AN // BM (Tính chất hình bình hành).

Mà BM = MC (cmt).

=> AN = MC.

Xét tứ giác ANMC:

AN = MC (cmt).

AN // MC (AN // BM).

=> Tứ giác ANMC là hình bình hành (dhnb).

b) Xét tam giác ABC vuông tại A: 

AM là trung tuyến (gt).

=> AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).

Mà BM = MC = \(\dfrac{1}{2}\) BC (cmt).

=> AM = BM = MC = \(\dfrac{1}{2}\) BC.

Xét hình bình hành AMBN: AM = BM (cmt).

=> Tứ giác AMBN là hình thoi (dhnb).

c) Tứ giác ANMC là hình bình hành (cmt).

=> NM = AC (Tính chất hình bình hành).

Mà AC = 6 cm (gt).

=> NM = AC = 6 cm.

\(S_{AMBN}=\dfrac{1}{2}.AB.NM=\dfrac{1}{2}.4.6=12\left(cm^2\right).\)

d) Tứ giác AMBN là hình vuông (gt).

=> \(\widehat{AMB}=90^o\) (Tính chất hình vuông).

=> \(AM\perp BC.\)

Xét tam giác ABC vuông tại A:

AM là trung tuyến (gt).

AM là đường cao \(\left(AM\perp BC\right).\)

=> Tam giác vuông ABC vuông cân tại A.