K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

wwwwwwwwwwwwwwwwwwwwwwwwww

28 tháng 12 2021

a, tứ giác AMCD có: ID=IM;IA=IC

⇒tứ giác AMCD là hình bình hành

Lại có:góc AMC=90 độ (ΔABC cân tại A có AM là đường trung tuyến)

⇒tứ giác AMCD là hình chữ nhật

28 tháng 12 2021

b, Ta có AD//CM và AD=CM (tứ giác ADCM là hình chữ nhật)

    mà B∈CM và BM=CM

   ⇒AD//BM và AD=BM

   ⇒tứ giác ABMD là hình bình hành

a: Xét tứ giác BEFA có

BE//AF

BE=FA

BE=BA

=>BEFA là hình thoi

b: góc B=180-60=120 độ

=>góc IBE=60 độ

mà IB=BE

nên ΔIBE đều

=>góc EIB=60 độ=góc A

=>AIEF là hình thang cân

c:

Xét ΔABD có

BF là trung tuyến

BF=AD/2

Do đo: ΔABD vuông tại B

Xét tứ giác BICD có

BI//CD

BI=CD

góc IBD=90 độ

Do đó: BICD là hình chữ nhật

d: Xét ΔAED có

EF là trung tuyến

EF=AD/2

=>ΔAED vuông tại E

=>góc AED=90 độ

a: Xét tứ giác ABCE có

D là trung điểm của đường chéo BC

D là trung điểm của đường chéo AE

Do đó: ABCE là hình bình hành

mà AB=AC

nên ABCE là hình thoi

b: Xét tứ giác AECF có

AE//CF

AF//CE

Do đó: AECF là hình bình hành

4 tháng 9 2021

ta có AD=ED
        BD=CD
=> ABCE là hình thoi

12 tháng 12 2021

\(a,\) Vì M là trung điểm ND và BC nên BDCN là hình bình hành

\(b,\) Vì BDCN là hình bình hành nên \(BD\text{//}NC\) hay \(BD\text{//}NA\) và \(BD=NC=NA\) (N là trung điểm AC)

Do đó ABDN là hình bình hành

Mà \(\widehat{BAC}\equiv\widehat{NAB}=90^0\) nên ABDN là hình chữ nhật

\(c,\) Kẻ đường cao AH

\(\Rightarrow\left\{{}\begin{matrix}S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AH.2BM=AH.BM\\S_{ABM}=\dfrac{1}{2}AH.BM\end{matrix}\right.\\ \Rightarrow\dfrac{S_{ABM}}{S_{ABC}}=\dfrac{AH.BM}{2AH.BM}=\dfrac{1}{2}\\ \Rightarrow S_{ABC}=2S_{ABM}\)

12 tháng 12 2021

Em cảm ơn ạ 

18 tháng 1 2023

Bạn tự vẽ hình nhé.

a. 

Xét tứ giác AEBD có:

AH = HB (H là trung điểm của AB)

HE = HD (vì E và D đối xứng với nhau qua H)

=> AEBD là hình bình hành.

Lại có: \(\widehat{ADB}=90^o\) (AD là đường trung tuyến của tam giác cân ABC)

Từ trên suy ra: AEBD là hình chữ nhật.

b.

Vì AEBD là hình chữ nhật nên ta có:

- AE // BD và AE = BD (1)

mà: BC // AE và BD = DC (2)

Từ (1), (2) suy ra: ACDE là hình bình hành.

c.

có: \(S_{AEBD}=AD.DB=\dfrac{1}{2}.AD.BC=S_{ABC}\)

d.

Để AEBD là hình vuông thì AD = BD

=> \(AD=\dfrac{1}{2}BC\) => Tg ABC vuông.

Mà AB = AC

=> Điều kiện của tam giác ABC là vuông cân tại A để AEBD là hình vuông.