K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 11 2018

Câu 1:

\(\overrightarrow{BA}\uparrow\uparrow\overrightarrow{CD}\)\(BA=\frac{1}{3}CD\Rightarrow \overrightarrow{BA}=\frac{1}{3}\overrightarrow{CD}\)

Để $B,M,D$ thẳng hàng \(\Leftrightarrow \exists k\in\mathbb{R}|\overrightarrow{BM}=k\overrightarrow{MD}\)

\(\Leftrightarrow \overrightarrow{BA}+\overrightarrow{AM}=k\overrightarrow{MD}\)

\(\Leftrightarrow \frac{1}{3}\overrightarrow{CD}+x\overrightarrow{MC}=k\overrightarrow{MD}\)

\(\Leftrightarrow \frac{1}{3}(\overrightarrow{MC}+\overrightarrow{CD})+(x-\frac{1}{3})\overrightarrow{MC}=k\overrightarrow{MD}\)

\(\Leftrightarrow \frac{1}{3}\overrightarrow{MD}+(x-\frac{1}{3})\overrightarrow{MC}=k\overrightarrow{MD}\)

\(\Leftrightarrow (x-\frac{1}{3})\overrightarrow{MC}=(k-\frac{1}{3})\overrightarrow{MD}\)

\(\overrightarrow{MC}; \overrightarrow{MD}\) không phải 2 vecto cùng phương nên điều trên chỉ xảy ra khi \(x-\frac{1}{3}=k-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
19 tháng 11 2018

Bài 2:
Lấy điểm $I(a,b)$ sao cho \(\overrightarrow{IA}-2\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\)

\(\Leftrightarrow (1-a, 1-b)-2(4-a, 3-b)+3(2-a, -2-b)=(0,0)\)

\(\Leftrightarrow (-1-2a,-11-2b)=(0,0)\Rightarrow a=-\frac{1}{2}; b=\frac{-11}{2}\)

Vậy \(I(-\frac{1}{2}; -\frac{11}{2})\)

Ta có:

\(|\overrightarrow{MA}-2\overrightarrow{MB}+3\overrightarrow{MC}|=|\overrightarrow{MI}+\overrightarrow{IA}-2(\overrightarrow{MI}+\overrightarrow{IB})+3(\overrightarrow{MI}+\overrightarrow{IC})|\)

\(|2\overrightarrow{MI}+(\overrightarrow{IA}-2\overrightarrow{IB}+3\overrightarrow{IC})|=2|\overrightarrow{MI}|\)

Để \(|\overrightarrow{MA}-2\overrightarrow{MB}+3\overrightarrow{MC}|\) min thì \(|\overrightarrow{MI}|\) min. Điều này xảy ra khi $M$ là hình chiếu của $I$ trên $Ox$

Do đó \(M=(-\frac{1}{2};0)\)

16 tháng 1 2021

Tham khảo:

Cho hình thang vuông ABCD

NV
13 tháng 1 2021

Chắc chắn là đề bài sai rồi

Vế trái là 1 đại lượng vô hướng

Vế phải là 1 đại lượng có hướng (vecto)

Hai vế không thể bằng nhau được

14 tháng 1 2021

Em viết nhầm ạ, vế phải đó là 

\(\overrightarrow{IJ}^2\)

23 tháng 12 2020

1.

Dựng \(\overrightarrow{DB'}=\overrightarrow{CB}\)

\(k\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{DB}\)

\(=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{DA}+\overrightarrow{AB}\)

\(=2\overrightarrow{AB}+\overrightarrow{B'D}+\overrightarrow{DA}\)

\(=2\overrightarrow{AB}+\overrightarrow{B'A}\)

\(=2\overrightarrow{AB}+2\overrightarrow{AB}=4\overrightarrow{AB}\)

\(\Rightarrow k=4\)

23 tháng 12 2020

Gọi M là trung điểm IB

\(\left|\overrightarrow{AB}+\overrightarrow{AI}\right|=\left|2\overrightarrow{AM}\right|=2AM\)

Ta có \(\overrightarrow{AM}^2=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2=MI^2+IA^2-2MI.IA.cos90^o=\dfrac{1}{16}a^2+\dfrac{3}{4}a^2=\dfrac{13}{16}a^2\)

\(\Rightarrow AM=\dfrac{\sqrt{13}}{4}a\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{AI}\right|=\dfrac{\sqrt{13}}{2}a\)

2:

a: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

=>BMNC là hình thang

mà góc B=góc C

nên BMNC là hình thang cân

b: Để BM=MN=NC thì MN=MB

=>góc MNB=góc MBN

=>góc ABN=góc CBN

=>BN là phân giác của góc ABC

=>N là chân đường phân giác kẻ từ B xuống AC

NM=NC

=>góc NMC=góc NCM

=>góc ACM=góc BCM

=>CM là phân giác của góc ACB

=>M là chân đường phân giác kẻ từ C xuống AB

3: TH1: AD//BC

Xét tứ giác ABCD có

AD//BC

AD=BC

=>ABCD là hình bình hành

=>góc C+góc D=180 độ

mà góc C=góc D

nên góc C=180/2=90 độ

=>ABCD là hình chữ nhật

=>ABCD là hình thang cân

TH2: AD ko song song với BC

Gọi O là giao của AD và BC

Xét ΔODC có góc C=góc D

nên ΔODC cân tại O

=>OD=OC

=>OA=OB

Xét ΔODC có OA/OD=OB/OC

nên AB//CD

=>ABCD là hình thang

mà góc C=góc D

nên ABCD là hình thang cân

6 tháng 6 2018

xin lỗi chi nha

24 tháng 7 2018

ầdddadffááfààfdáfsafda