K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2015

a) \(\frac{5\left(a-b\right)^3+2\left(a-b\right)^2}{\left(b-a\right)^2}=\frac{\left(a-b\right)^2\cdot\left[5\cdot\left(a-b\right)+2\right]}{\left(a-b\right)^2}=5\cdot\left(a-b\right)+2\)

b) \(\frac{5\left(x-2y\right)^3}{5x-10y}=\frac{5\left(x-2y\right)^3}{5\left(x-2y\right)}=\left(x-2y\right)^2\)

c) \(\frac{x^3+8y^3}{x+2y}=\frac{\left(x+2y\right)\left(x^2-2xy+4y^2\right)}{x+2y}=x^2-2xy+4y^2\)

8 tháng 10 2017

a)\([\)5(a-b)\(^3\)+2(a-b)\(^2]\):(b-a)\(^2\)

=\([\)5(a-b)\(^3\)+2(a-b)\(^2]\):(a-b)\(^2\)

=5(a-b)+2

b)5(x-2y)\(^3\):(5x-10y)

=5(x-2y)\(^3\):5(x-2y)

=(x-2y)\(^2\)

c)(x\(^3\)+8y\(^3\)):(x+2y)

=\([\)x\(^3\)+(2y)\(^3]\):(x+2y)

=(x+2y)(x\(^2\)-2xy+4y\(^2\)):(x+2y)

=x\(^2\)-2xy+4y\(^2\)

8 tháng 10 2017

a)\((\dfrac{5}{7}x^2y)^3:(\dfrac{1}{7}xy)^3\)

=\((\dfrac{5}{7}x^2y:\dfrac{1}{7}:x:y)^3\)

=(\(\dfrac{5}{7}.7.x^2:x.y:y)^3\)

=(5x)\(^3\)

=5\(^3\).x\(^3\)

=125.x\(^3\)

23 tháng 9 2020

Ta có :\(15x=10y=6z\Rightarrow\hept{\begin{cases}15x=10y\\10y=6z\end{cases}}\Rightarrow\hept{\begin{cases}3x=2y\\5y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{5}\end{cases}}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)

Khi đó 5x3 + 2y3 - z3 = 31

=> 5(2k)3 + 2(3k)3 - (5k)3 = 31

=> 40k3 + 54k3 - 125k3 = 31

=> -31k3 = 31

=> k3 = -1

=> k = -1

=> x = -2 ; y = -3 ; z = -5

b) Ta có 7x = 14y = 6z =>  \(\hept{\begin{cases}7x=14y\\14y=6z\end{cases}}\Rightarrow\hept{\begin{cases}x=2y\\7y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{1}\\\frac{y}{3}=\frac{z}{7}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{6}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{7}\end{cases}}\Rightarrow\frac{x}{6}=\frac{y}{3}=\frac{z}{7}\)

Đặt \(\frac{x}{6}=\frac{y}{3}=\frac{z}{7}=k\Rightarrow\hept{\begin{cases}x=6k\\y=3k\\z=7k\end{cases}}\)

Khi đó 2x2 - 3y2 = 5

<=> 2.(6k)2 - 3.(3k)2 = 5

=> 72k2 - 27k2 = 5

=> 45k2 = 5

=> k2 = 1/9

=> k = \(\pm\frac{1}{3}\)

Nếu k = 1/3 => x = 2 ; y = 1 ; z = 7/3

Nếu k = -1/3 => x = -2 ; y = - 1 ; z = -7/3

Vậy các cặp (x;y;z) thỏa mãn là : (2;1;7/3) ; (-2 ; - 1; -7/3)

c) Ta có : \(3x=8y=5z\Rightarrow\frac{3x}{120}=\frac{8y}{120}=\frac{5z}{120}\Rightarrow\frac{x}{40}=\frac{y}{15}=\frac{z}{24}\)

Đặt \(\frac{x}{40}=\frac{y}{15}=\frac{z}{24}=k\Rightarrow\hept{\begin{cases}x=40k\\y=15k\\z=24k\end{cases}}\)

Khi đó |x - 2y| = 5

<=> |40k - 2.15k| = 5

=>  |10k| = 5

=> \(\orbr{\begin{cases}10k=5\\10k=-5\end{cases}}\Rightarrow\orbr{\begin{cases}k=\frac{1}{2}\\k=-\frac{1}{2}\end{cases}}\)

Nếu k = 5 => x = 20 ; y = 7,5 ; z = 12

Nếu k = -5 => x = -20 ; y =-7,5 ; z = -12

d) 4x = 5y = 6z => \(\frac{4x}{60}=\frac{5y}{60}=\frac{6z}{60}\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{10}\)

Đặt \(\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=k\Rightarrow\hept{\begin{cases}x=15k\\y=12k\\z=10k\end{cases}}\)

Khi đó (3x - 2y)2 = 16

<=> (3.15k - 2.12k)2 = 16

=> (45k -24k)2 = 16

=> (21k)2 = 16

=> \(\orbr{\begin{cases}21k=4\\21k=-4\end{cases}}\Rightarrow\orbr{\begin{cases}k=\frac{4}{21}\\k=-\frac{4}{21}\end{cases}}\)

Nếu k = 4/21 => x = 20/7 ; y = 16/7 ; z = 40/21

Nếu k = -4/21 => x = -20/7 ; y = -16/7 ; z = -40/21

23 tháng 9 2020

Ai có cách làm khác không 

24 tháng 11 2017

a) \(\dfrac{\left(x+y\right)^2}{2}\)

b)\(\dfrac{5a-5b}{2}\)

c)\(\left(x-2y\right)^2\)

28 tháng 8 2023

1) \(3x\left(x-1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(3x+5\right)\)

2) \(4x(x-2y)-8y(2y-x)\)

\(=4x\left(x-2y\right)+8y\left(x-2y\right)\)

\(=\left(4x+8y\right)\left(x-2y\right)\)

\(=4\left(x+2y\right)\left(x-2y\right)\)

3) \(a^2\left(x-1\right)+b^2\left(1-x\right)\)

\(=a^2\left(x-1\right)-b^2\left(x-1\right)\)

\(=\left(a^2-b^2\right)\left(x-1\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(x-1\right)\)

4) \(3x\left(x-a\right)+4a\left(a-x\right)\)

\(=3x\left(x-a\right)-4a\left(x-a\right)\)

\(=\left(x-a\right)\left(3x-4a\right)\)

5) \(5x\left(x-y\right)^2+10y^2\left(y-x\right)^2\)

\(=5x\left(x-y\right)^2+10y^2\left(x-y\right)^2\)

\(=\left(5x+10y^2\right)\left(x-y\right)^2\)

\(=5\left(x+2y^2\right)\left(x-y\right)^2\)

6) \(3x\left(x-3\right)^2+9\left(3-x\right)^2\)

\(=3x\left(x-3\right)^2+9\left(x-3\right)^2\)

\(=\left(3x+9\right)\left(x-3\right)^2\)

\(=3\left(x+3\right)\left(x-3\right)^2\)

7) \(x\left(m-a\right)^2-y\left(a-m\right)^2\)

\(=x\left(a-m\right)^2-y\left(a-m\right)^2\)

\(=\left(x-y\right)\left(a-m\right)^2\)

8) \(6y^2\left(x-1\right)^2+9y\left(1-x\right)^2\)

\(=6y^2\left(x-1\right)^2+9y\left(x-1\right)^2\)

\(=\left(6y^2+9x\right)\left(x-1\right)^2\)

\(=3\left(2y^2+3x\right)\left(x-1\right)^2\)

#Ayumu