Chứng minh
1/ 2 căn 1+ 1/ 3 căn 2+ 1/4 căn 3+...+1/2005 căn 2004<2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
√2005 + √2003 > √2002 + √2000
<=> 1/(√2005 + √2003) < 1/(√2002 + √2000)
<=> 2/(√2005 + √2003) < 2/(√2002 + √2000)
<=> (2005 - 2003)/(√2005 + √2003) < (2002 - 2000)/(√2002 + √2000)
<=> √2005 - √2003 < √2002 - √2000
<=> √2005 + √2000 < √2002 + √2003
b) Tương tự câu a
√(a + 6) + √(a + 4) > √(a + 2) + √a
<=> 1/[√(a + 6) + √(a + 4)] < 1/[√(a + 2) + √a]
<=> 2/[√(a + 6) + √(a + 4)] < 2/[√(a + 2) + √a]
<=> [(a + 6) - (a + 4)/[√(a + 6) + √(a + 4)] < [(a + 2) - a]/[√(a + 2) + √a]
<=> √(a + 6) - √(a + 4) < √(a + 2) - √a
<=> √(a + 6) + √a < √(a + 4) + √(a + 2)
Bài 1:
a) \(B=\sqrt{1-4x+4x^2}\)
\(=\sqrt{\left(1-2x\right)^2}\)
\(=\left|1-2x\right|\)
Nếu \(x\le\frac{1}{2}\)thì: \(B=1-2x\)
Nếu \(x>\frac{1}{2}\)thì: \(B=2x-1\)
b) Tại \(x=-7\)thì: \(B=1-2.\left(-7\right)=15\)
Ý bạn là \(18< \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}< 19\) ?
Ta có:
\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}=\frac{2}{2\sqrt{1}}+\frac{2}{2\sqrt{2}}+...+\frac{2}{2\sqrt{100}}\)
\(\Rightarrow A>\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{100}+\sqrt{101}}\)
\(\Rightarrow A>\frac{2\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{2\left(\sqrt{101}-\sqrt{100}\right)}{\left(\sqrt{101}-\sqrt{100}\right)\left(\sqrt{101}+\sqrt{100}\right)}\)
\(\Rightarrow A>2\left(\sqrt{2}-1+\sqrt{3}-2+...+\sqrt{101}-\sqrt{100}\right)\)
\(\Rightarrow A>2\left(\sqrt{101}-1\right)>2\left(\sqrt{100}-1\right)=18\)
Tương tự:
\(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}=1+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{100}}\)
\(\Rightarrow A< 1+\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{99}+\sqrt{100}}\)
Nhân liên hợp tử mẫu và rút gọn ta được (giống chứng minh >18 bên trên):
\(A< 1+2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(\Rightarrow A< 1+2\left(\sqrt{100}-1\right)=1+18=19\)
\(\Rightarrow18< A< 19\) (đpcm)