tìm x,y thuộc N sao cho:x(3y+1)=12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x(y+1 ) + 3y = 74
=> x ( y + 1 ) + 3y + 3 = 74 + 3
=> x ( y + 1 ) + 3 ( y + 1 ) = 77
=> ( x+ 3 )( y + 1 ) = 77
77 = 1.77 = 11.7 = 7.11 = 77.1
(+) x +3 = 1 và y + 1 = 77
=> x = -2 và y = 76 ( loại vì x ; y thuộc N )
(+) x + 3 = 7 và y + 1 = 11
=> x = 4 và y = 10 ( TM)
Tương tự xét hai trường hợp còn lại
Bài 2 :
Ta có : 9x + 5y và 17x + 17y chia hết cho 17
=> ( 17x + 17y ) - ( 9x + 5y ) chia hết cho 17
=> 8x + 12y chia hết cho 17
=> 4.(2x+3y) chia hết cho 17
Mà (4;17) = 1 nên 2x + 3y chia hết cho 17
=> đpcm
x(y + 4) - 3y - 12 = 19
=> x(y + 4) - 3(y + 4) = 19
=> (x - 3)(y +4) = 19
Vì x; y nguyên nên x - 3 \(\in\) Ư(19) = {-1; 1; -19; 19}
Ta có bảng sau:
x-3 | -1 | 1 | -19 | 19 |
x | 2 | 4 | -16 | 22 |
y+4 | -19 | 19 | -1 | 1 |
y | -23 | 15 | -5 | -3 |
Vậy có 4 cặp (x; y) \(\in\) {(2;-23); (4;15); (-16; -5); (22; -3)}
1)
xy + x - 4y = 12
x + y(x - 4) = 12
y(x - 4) = 12 - x
\(y=\dfrac{-x+12}{x-4}\)
Vì \(x,y\inℕ\) nên
\(\left(-x+12\right)⋮\left(x-4\right)\)
\(\left(-x+12\right)-\left(x-4\right)⋮\left(x-4\right)\)
\(16⋮\left(x-4\right)\)
\(\left(x-4\right)\inƯ\left(16\right)\)
\(\left(x-4\right)\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
\(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)
\(y\in\left\{\dfrac{-5+12}{5-4};\dfrac{-3+12}{3-4};\dfrac{-6+12}{6-4};\dfrac{-2+12}{2-4};\dfrac{-8+12}{8-4};\dfrac{-0+12}{0-4};\dfrac{-12+12}{12-4};\dfrac{4+12}{-4-4};\dfrac{-20+12}{20-4};\dfrac{12+12}{-12-4}\right\}\)
\(y\in\left\{7;-9;3;-5;1;-3;0;-2;-\dfrac{1}{2};-\dfrac{7}{5}\right\}\)
\(\left(x;y\right)\in\left\{\left(5;7\right);\left(3;-9\right);\left(6;3\right);\left(2;-5\right);\left(8;1\right);\left(0;-3\right);\left(12;0\right);\left(-4;-2\right);\left(20;-\dfrac{1}{2}\right);\left(-12;-\dfrac{7}{5}\right)\right\}\)
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
2)
(2x + 3)(y - 2) = 15
\(\left(2x+3\right)\inƯ\left(15\right)\)
\(\left(2x+3\right)\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
Ta lập bảng
2x + 3 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
y - 2 | 15 | -15 | 5 | -5 | 3 | -3 | 1 | -1 |
(x; y) | (-1; 17) | (-2; -13) | (0; 7) | (-3; -3) | (1; 5) | (-4; -1) | (6; 3) | (-9; 1) |
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
Ta có:\(x\left(x+1\right)=y^2+1\Leftrightarrow x^2+x=y^2+1\Leftrightarrow4x^2+4x+1=4y^2+5\)
\(\Leftrightarrow\left(2x+1\right)^2-4y^2=5\Leftrightarrow\left(2x+2y+1\right).\left(2x-2y+1\right)=5\)
Do x,y thuộc Z nên 2x+2y+1 và 2x-2y+1 là ước của 5
Ta có bảng giá trị :
2x+2y+1 | 1 | 5 | -1 | -5 |
2x-2y+1 | 5 | 1 | -5 | -1 |
x | 1 | 1 | -2 | -2 |
y | -1 | 1 | 1 | -1 |
Vậy \(\left(x;y\right)\in\left\{\left(1;-1\right);\left(1;1\right);\left(-2;1\right);\left(-2;-1\right)\right\}\)
do X,Y là các số tự nhiên do đó X phải là ước của 3
do đó
\(\orbr{\begin{cases}X=1\Rightarrow Y-1=3\Rightarrow Y=4\\X=3\Rightarrow Y-1=1\Rightarrow Y=2\end{cases}}\)
vậy ta có hai cặp X,Y thỏa mãn là (1,4) và (3,2)
\(x.\left(y-1\right)\) = 3
\(x\) = \(\dfrac{3}{y-1}\) (đk y \(\ne\) 1)
\(x\in\) N \(\Leftrightarrow\) 3 ⋮ y - 1; y - 1 \(\in\) Ư(3) = {-3; -1; 1; 3}
Lập bảng ta có:
y - 1 | - 3 | -1 | 1 | 3 |
y | -2 | 0 | 2 | 4 |
\(x\) = \(\dfrac{3}{y-1}\) | -3 | 3 | 1 | |
\(x;y\) \(\in\) N; y \(\ne\) 1 | thỏa mãn | thỏa mãn | ||
loại | loại |
Theo bài trên ta có:
(\(x;y\)) = (3; 2); (1; 4)
\(x\left(3y+1\right)=12\)
\(\Rightarrow x;3y+1\inƯ\left(12\right)=\left(1;2;3;4;6;12\right)\)
Ta có bảng sau
Do x và y thuộc N nên \(\left(x;y\right)\in\left(3;1\right);\left(12;0\right)\)