cho hình vuông ABCD. gọi E là 1 điểm nằm trên BC. Tia phân giác góc DAE cắt CD tại F. Kẻ KH vuông góc AE và FH cắt BC tại G. Tính số đo góc FAG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Xét hai tam giác vuông DAF và HAF, ta có:
∠ (ADF) = ∠ (AHF) = 90 0
∠ A 1 = ∠ A 2 (vì AF là tia phân giác của góc DAH)
AF cạnh huyền chung
Suy ra: ∆ DAF = ∆ HAF (cạnh huyền, góc nhọn)
⇒ DA = HA
Mà DA = AB (gt)
Suy ra: HA = AB
* Xét hai tam giác vuông HAG và, BAG, ta có:
∠ (AHG) = ∠ (ABG) = 90 0
HA = AB (chứng minh trên)
AG cạnh huyền chung
Suy ra: ∆ HAG = ∆ BAG (cạnh huyền, cạnh góc vuông)
⇒ ∠ A 3 = ∠ A 4 hay AG là tia phân giác của ∠ (EAB)
Vậy (FAG) = ∠ A 2 + ∠ A 3 = 1/2 ( ∠ (DAE) + ∠ (EAB) ) = 1/2 . 90 0 = 45 0
Tam giác ADF=tam giác AHF(ch-gn) Suy ra AD=AF
Tam giác AGH= tam giác AGB (ch-cgv) Suy ra HAG=BAG
Suy ra FAG=FAH+HAG=1/2(DAH+HAG)=1/2DAB=45 ĐỘ