K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2020

a, Ta có ∆ABE = ∆ADF(g.c.g) => AE = AF

b, Ta có: ∆AKF ~ ∆CAF ( F ^ chung và  F A K ^ = F C A ^ = 45 0 )

=> A F H F = C F A F =>  A F 2 = K F . C F

c, S A E F = 93 2 c m 2

d, Ta có: AE.AJ=AF.AJ=AD.FJ

=>  A E . A J F J = AD không đổi

2 tháng 9 2018

A B C D E N F K G H P

Trên tia đối của DC lấy điểm P sao cho BE=DP

Dễ dàng c/m \(\Delta\)ABE = \(\Delta\)ADP (c.g.c) => AE=AP

Và ^BAE = ^DAP => ^BAE + ^DAE = ^DAP + ^DAE => ^PAE = 900

Ta có: ^EAN + ^PAN = ^PAE = 900. Mà ^EAN = 450 => ^EAN = ^PAN = 450

Xét \(\Delta\)ANE & \(\Delta\)ANP có: AE=AP; ^EAN = ^PAN; AN chung => \(\Delta\)ANE = \(\Delta\)ANP (c.g.c)

=> ^APN = ^AEN hay ^APD = ^AEH. Mà ^APD = ^AEB (Do \(\Delta\)ABE = \(\Delta\)ADP)

=> ^AEB = ^AEH => \(\Delta\)ABE = \(\Delta\)AHE (Cạnh huyền góc nhọn) => AB=AH

Và ^BAE = ^HAE hay ^BAG = ^HAG

=> \(\Delta\)AGB = \(\Delta\)AGH (c.g.c) => ^ABG = ^AHG. Tương tự: ^ADK = ^AHK 

=> ^ABG + ^ADK = ^AHG + ^AHK => ^KHG = 900 => \(\Delta\)KHG là tam giác vuông (đpcm).

=> HK2 + HG2 = KG2 . Lại có: HG=BG; HK=DK (Do \(\Delta\)AGB=\(\Delta\)AHG; \(\Delta\)AHK=\(\Delta\)ADK)

=> KG2 = DK2 + BG2 (đpcm).

29 tháng 4 2018

a, HS tự chứng minh

b, HS tự chứng minh

c, Tứ giác ACFK nội tiếp (I) với I là trung điểm của KF => BD là trung trực AC phải đi qua I

d, HS tự chứng minh