K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

A B C D E N F K G H P

Trên tia đối của DC lấy điểm P sao cho BE=DP

Dễ dàng c/m \(\Delta\)ABE = \(\Delta\)ADP (c.g.c) => AE=AP

Và ^BAE = ^DAP => ^BAE + ^DAE = ^DAP + ^DAE => ^PAE = 900

Ta có: ^EAN + ^PAN = ^PAE = 900. Mà ^EAN = 450 => ^EAN = ^PAN = 450

Xét \(\Delta\)ANE & \(\Delta\)ANP có: AE=AP; ^EAN = ^PAN; AN chung => \(\Delta\)ANE = \(\Delta\)ANP (c.g.c)

=> ^APN = ^AEN hay ^APD = ^AEH. Mà ^APD = ^AEB (Do \(\Delta\)ABE = \(\Delta\)ADP)

=> ^AEB = ^AEH => \(\Delta\)ABE = \(\Delta\)AHE (Cạnh huyền góc nhọn) => AB=AH

Và ^BAE = ^HAE hay ^BAG = ^HAG

=> \(\Delta\)AGB = \(\Delta\)AGH (c.g.c) => ^ABG = ^AHG. Tương tự: ^ADK = ^AHK 

=> ^ABG + ^ADK = ^AHG + ^AHK => ^KHG = 900 => \(\Delta\)KHG là tam giác vuông (đpcm).

=> HK2 + HG2 = KG2 . Lại có: HG=BG; HK=DK (Do \(\Delta\)AGB=\(\Delta\)AHG; \(\Delta\)AHK=\(\Delta\)ADK)

=> KG2 = DK2 + BG2 (đpcm).

25 tháng 10 2017

a) Xét tam giác AEB và tam giác MAD có:

\(\widehat{ABE}=\widehat{MDA}\left(=90^o\right)\)

\(\widehat{AEB}=\widehat{MAD}\) (So le trong)

Vậy nên \(\Delta AEB\sim\Delta MAD\left(g-g\right)\Rightarrow\frac{AE}{MA}=\frac{BE}{DA}\Rightarrow AE.DA=AM.BE\)

\(\Rightarrow AE^2.a^2=MA^2.BE^2\Rightarrow AE^2.a^2=MA^2\left(AE^2-AB^2\right)\)

\(\Rightarrow AE^2.a^2=MA^2.AE^2-MA^2.a^2\Rightarrow\left(AE^2+MA^2\right).a^2=AE^2.AM^2\)

\(\Rightarrow\frac{1}{AE^2}+\frac{1}{AM^2}=\frac{1}{a^2}\)

19 tháng 10 2019

A B C D O E M G H F K

a) Xét \(\frac{a^2}{AE^2}+\frac{a^2}{AM^2}=\frac{CM^2}{ME^2}+\frac{CE^2}{ME^2}=1\)(ĐL Thales và Pytagoras). Suy ra \(\frac{1}{AE^2}+\frac{1}{AM^2}=\frac{1}{a^2}.\)

b) Ta dễ thấy \(\Delta\)ACG = \(\Delta\)ACM (c.g.c), suy ra ^AGC = ^AMC = ^BAE. Từ đây \(\Delta\)ABE ~ \(\Delta\)GBA (g.g)

Vậy BE.BG = AB2 = BO.BD nên \(\Delta\)BOE ~ \(\Delta\)BGD (c.g.c) (đpcm).

c) Gọi CH giao AB tại K. Theo hệ quả ĐL Thales \(\frac{CM}{BA}=\frac{EC}{EB}=2\)(Vì \(BE=\frac{a}{3}\))\(\Rightarrow CM=2a\)

Ta cũng có \(\frac{CF}{FM}=\frac{KB}{BA}\), suy ra \(\frac{\frac{a}{2}}{2a-\frac{a}{2}}=\frac{KB}{a}\Leftrightarrow KB=\frac{a}{3}\left(=BE\right)\)

Từ đó \(\Delta\)EKB vuông cân tại B, mà \(\Delta\)ABC vuông cân tại B nên E là trực tâm \(\Delta\)ACK

Suy ra AE vuông góc CK (tại H). Vậy, theo hệ thức lượng trong tam giác vuông (\(\Delta\)MEC) thì

\(CH^2=HE.HM\Leftrightarrow CH^3=HE.HC.HM\Leftrightarrow CH=\sqrt[3]{HE.HC.HM}\)(đpcm).

2 tháng 7 2018

câu a ) mình nhầm nha \(\Delta AGE\)mới đúng nha các bn

Ai làm đúng nhanh mik tích cho

3 tháng 7 2018

hình vuông nha các bạn ko phải hình thang vuông

10 tháng 10 2016

chtt sẽ có câu a nhé bạn
câu b thì bạn thay góc vào là ra
còn câu c thì =)) 

19 tháng 9 2018

olm-logo.png

29 tháng 6 2017

Hình đa giác TenDaGiac1: DaGiac[B, C, 4] Góc α: Góc giữa E, A, E' Góc α: Góc giữa E, A, E' Góc α: Góc giữa E, A, E' Đoạn thẳng f: Đoạn thẳng [B, C] của Hình đa giác TenDaGiac1 Đoạn thẳng g: Đoạn thẳng [C, D] của Hình đa giác TenDaGiac1 Đoạn thẳng h: Đoạn thẳng [D, A] của Hình đa giác TenDaGiac1 Đoạn thẳng i: Đoạn thẳng [A, B] của Hình đa giác TenDaGiac1 Đoạn thẳng j: Đoạn thẳng [E, A] Đoạn thẳng N: Đoạn thẳng [A, F] Đoạn thẳng N: Đoạn thẳng [A, F] Đoạn thẳng m: Đoạn thẳng [B, D] Đoạn thẳng l: Đoạn thẳng [E, F] Đoạn thẳng p: Đoạn thẳng [A, H] Đoạn thẳng q: Đoạn thẳng [M, F] Đoạn thẳng r: Đoạn thẳng [E, G] B = (-1.34, 1.78) B = (-1.34, 1.78) B = (-1.34, 1.78) C = (3.1, 1.78) C = (3.1, 1.78) C = (3.1, 1.78) Điểm D: DaGiac[B, C, 4] Điểm D: DaGiac[B, C, 4] Điểm D: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm E: Điểm trên f Điểm E: Điểm trên f Điểm E: Điểm trên f Điểm F: Giao điểm của k, g Điểm F: Giao điểm của k, g Điểm F: Giao điểm của k, g Điểm M: Giao điểm của j, m Điểm M: Giao điểm của j, m Điểm M: Giao điểm của j, m Điểm H: Giao điểm của n, l Điểm H: Giao điểm của n, l Điểm H: Giao điểm của n, l Điểm G: Giao điểm của N, m Điểm G: Giao điểm của N, m

Cô hướng dẫn nhé

a) Do ABCD là hình vuông nên \(\widehat{BEN}=45^o\), vậy thì \(\widehat{BEN}=\widehat{BAN}\) hay ABEN là tứ giác nội tiếp.

Tương tự với tứ giác ADFN.

b) Do ABEN là tứ giác nội tiếp nên \(\widehat{ANE}=180^o-\widehat{ABE}=90^o\) hay \(EN⊥AF\)

Tương tự \(FM⊥AE\)

Xét tam giác AEF có AH, FM, EN là ba đường cao nên chúng đồng quy.

c) Dễ thấy tứ giác EMNF nội tiếp nên \(\widehat{MNE}=\widehat{MFE}\)( Hai góc nội tiếp cùng chắn một cung)

Mà tứ giác ABEN nội tiếp nên \(\widehat{MNE}=\widehat{BAE}\)( Hai góc nội tiếp cùng chắn một cung)

và  \(\widehat{MFE}=\widehat{EAH}\) ( Cùng phụ góc AEF)

Vậy nên \(\widehat{BAE}=\widehat{EAH}\)

Suy ra \(\Delta ABE=\Delta AHE\) (Cạnh huyền góc nhọn) hay AH = AB không đổi.

Lại có AH vuông góc EF tại H nên EF luôn tiếp xúc với đường tròn tâm A, bán kinh AB.

5 tháng 6 2019

M A B C I D N O H K

a) CM: \(\widehat{OBM}=\widehat{ODC}\)

 \(\widehat{OBM}+\widehat{OBC}=180^o\)( kề bù)

\(\widehat{ODC}+\widehat{OBC}=180^o\)( tứ giác ODCB nội tiếp )

=> \(\widehat{OBM}=\widehat{ODC}\)

b) 

+)Xét tam giác MCN có CO là tia phân giác đồng thời là đường cao

=> Tam giác CMN cân tại C (1)

=> \(\widehat{BMA}=\widehat{DNA}=\widehat{BAM}\)( CD//BA => DN//BA)

=> Tam giác BMA cân tại B

=> BM=BA=CD ( ABCD là hình bình hành) (2)

+) CO là phân giác \(\widehat{BCD}\)

=> \(\widebat{BO}=\widebat{DO}\)

=> BO=DO (3)

+) Xét tam giác BOM và tam giác DOC có:

\(\widehat{OBM}=\widehat{ODC}\)( theo a)

BM=CD ( theo 2)

BO=DO (theo 3)

=> \(\Delta BOM=\Delta DOC\)

+) OM=OC

Và từ (1) => CO là đường trung trực của MN

=> OM=ON

Vậy OM=ON=OC

=> O là tâm đường tròn ngoại tiếp tam giác CMN

c)  GỌi H là giao của IO và BD

=> IH vuông BD và H là trung điể m BD

Ta có: \(KD^2=\left(HD-HK\right)^2=HD^2+HK^2-2.HD.HK=ID^2-IH^2+IK^2-IH^2-2HD\left(HD-KD\right)\)

\(=ID^2+IK^2-2\left(IH^2+HD^2\right)+2HD.KD=ID^2+IK^2-2ID^2+2HD.KD\)

\(=IK^2-ID^2+2HD.KD\)

=> \(IB^2-IK^2=ID^2-IK^2=2HD.KD-KD^2\)

=> \(\frac{IB^2-IK^2}{KD^2}=\frac{2HD-KD}{KD}=\frac{BD-KD}{KD}=\frac{BK}{KD}\)(4)

Ta lại có: CK là phân giác trong của tam giác CBD

=> \(\frac{BK}{KD}=\frac{CB}{CD}\)

Và MB=DC ( theo cm câu a) , CM=CN ( Tam giác CMN cân)

=> CB=DN

=> \(\frac{BK}{KD}=\frac{DN}{MB}\)(5)

Từ (4), (5)

=> ĐPCM

3 tháng 11 2021

bạn có cách giải bài này chưa ạ , nếu có r thỉ mik với đc k ạ hihi