K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2018

A B C H D E M K

a) Qua A kẻ đường thẳng vuông góc với tia DE tại K.

Xét tứ giác AHDK: ^AHD = ^HDK = ^AKD = 900; AH=DH => AHDK là hình vuông

=> ^HAK = 900 và AH=AK

Ta có: ^BAH + ^HAC = ^EAK + ^HAC = 900 => ^BAH = ^EAK

Xét \(\Delta\)AHB và \(\Delta\)AKE có: ^AHB = ^AKE (=900); AH=AK; ^BAH = ^EAK

=> \(\Delta\)AHB = \(\Delta\)AKE (g.c.g) => AB=AE (2 cạnh tương ứng) (đpcm).

b) Xét \(\Delta\)ABE vuông tại A có trung tuyến AM => AM=BE/2. Tương tự: DM=BE/2

=> AM=DM => \(\Delta\)MAH = \(\Delta\)MDH (c.c.c) => ^AHM = ^DHM = ^AHD/2 = 450.

ĐS...

20 tháng 11 2022

a: 

Xét ΔAHD có AH=HD và góc AHD=90 độ

nên ΔAHD vuông cân tại H

=>góc HAD=góc HDA=45 độ

=>góc ADE=45 độ

Xét tứ giác ABDE có góc EAB+góc EDB=180 độ

nên ABDE là tứ giác nội tiếp

=>góc ABE=góc ADE=45 độ

Xét ΔEAB vuông tại A có góc ABE=45 độ

nên ΔEAB vuông cân tại A

=>AE=AB

b: Xét tứ giác AMHB có góc AMB=góc AHB=90 độ

nên AMHB là tứ giác nội tiếp

=>góc AHM=góc ABM=45 độ

20 tháng 11 2022

a: 

Xét ΔAHD có AH=HD và góc AHD=90 độ

nên ΔAHD vuông cân tại H

=>góc HAD=góc HDA=45 độ

=>góc ADE=45 độ

Xét tứ giác ABDE có góc EAB+góc EDB=180 độ

nên ABDE là tứ giác nội tiếp

=>góc ABE=góc ADE=45 độ

Xét ΔEAB vuông tại A có góc ABE=45 độ

nên ΔEAB vuông cân tại A

=>AE=AB

b: Xét tứ giác AMHB có góc AMB=góc AHB=90 độ

nên AMHB là tứ giác nội tiếp

=>góc AHM=góc ABM=45 độ

20 tháng 11 2022

a: 

Xét ΔAHD có AH=HD và góc AHD=90 độ

nên ΔAHD vuông cân tại H

=>góc HAD=góc HDA=45 độ

=>góc ADE=45 độ

Xét tứ giác ABDE có góc EAB+góc EDB=180 độ

nên ABDE là tứ giác nội tiếp

=>góc ABE=góc ADE=45 độ

Xét ΔEAB vuông tại A có góc ABE=45 độ

nên ΔEAB vuông cân tại A

=>AE=AB

b: Xét tứ giác AMHB có góc AMB=góc AHB=90 độ

nên AMHB là tứ giác nội tiếp

=>góc AHM=góc ABM=45 độ

a: Xét tứ giác EABD có

góc EAB+góc EDB=180 độ

=>EABD nội tiếp

=>góc EAD=góc EBD

Xét ΔBEC và ΔADC có

góc C chung

góc EBC=góc DAC

=>ΔBEC đồng dạng với ΔADC

b: EABD nội tiếp

=>góc AEB=góc ADB=45 độ

ΔAEB vuông tại A có góc AEB=45 độ

nên ΔAEB vuông cân tại A

=>góc ABM=45 độ

ΔAEB cân tại A

mà AM là đường trung tuyến

nên AM vuông góc BE

góc AMB=góc AHB=90 độ

=>AMHB nội tiếp

=>gócAHM=góc ABM=45 độ

1) Xét ΔCDE vuông tại D và ΔAHB vuông tại H có 

\(\widehat{DCE}=\widehat{HAB}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔCDE\(\sim\)ΔAHB(g-g)

18 tháng 3 2020

Bạn tự vẽ hình nhé!
a) Xét tam giác ADC và tam giác BEC có:

\(\widehat{C}\)chung

\(\frac{CD}{CE}=\frac{CA}{CB}\)(2 tam giác vuông CDE và CAB đồng dạng)

=> Tam giác ADC đồng dạng với tam giác BEC (cgc) (đpcm)

b) Tam giác AHD vuông tại H (gt)

=> \(\widehat{BEC}=\widehat{ADC}=135^o\)

Nên \(\widehat{AEB}=45^o\)do đó tam giác ABE vuông tại A 

=> BE=\(AB\sqrt{2}=3\sqrt{2}\)

Nguồn: Đặng Thị Nhiên

18 tháng 3 2020

c) Tam giác ABE vuông tại A nên tia AM là phân giác BAC

\(\Rightarrow\frac{GB}{GC}=\frac{AB}{AC}\)

Vì tam giác ABC đồng dạng tam giác DEC nên:

\(\frac{AB}{AC}=\frac{ED}{DC}=\frac{AH}{HC}=\frac{HD}{HC}\)(DE//AH)

Do đó: \(\frac{GB}{GC}=\frac{HD}{HC}\Rightarrow\frac{GB}{GB+GC}=\frac{HD}{HD+HC}\Rightarrow\frac{GB}{GC}=\frac{AH}{AH+HC}\left(đpcm\right)\)

Nguồn: Đặng Thị Nhiên