K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2018

Rút gọn biểu thức chứa căn bậc hai

AH
Akai Haruma
Giáo viên
31 tháng 8 2018

Lời giải:

Ta thấy:

\(\frac{1}{2}\text{VP}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{100}}\)

\(> \frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{100}+\sqrt{101}}\)

Mà:

\(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{100}+\sqrt{101}}=\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{2}+\sqrt{3}(\sqrt{3}-\sqrt{2})}+\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{3}+\sqrt{4})(\sqrt{4}-\sqrt{3)}}+...+\frac{\sqrt{101}-\sqrt{100}}{(\sqrt{100}+\sqrt{101})(\sqrt{101}-\sqrt{100})}\)

\(=\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{101}-\sqrt{100}}{101-100}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{101}-\sqrt{100}\)

\(=\sqrt{101}-\sqrt{2}\)

Do đó: \(\frac{1}{2}\text{VP}> \sqrt{101}-\sqrt{2}\Rightarrow \text{VP}>2(\sqrt{101}-\sqrt{2})> 17\) (đpcm)

20 tháng 10 2017

Ta có: \(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}=2.\left(\dfrac{1}{\sqrt{2}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{3}}+...+\dfrac{1}{\sqrt{100}+\sqrt{100}}\right)\) (1)

\(\left(1\right)< 2.\left(\dfrac{1}{\sqrt{2}+\sqrt{1}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{100}+\sqrt{99}}\right)\)\(=2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)\(=2\left(-\sqrt{1}+\sqrt{100}\right)=2\left(-1+10\right)=18\)

Vậy:...

10 tháng 2 2023

Ta có:

\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{3}}>\dfrac{1}{10}\)

...

\(\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>100.\dfrac{1}{10}=10\).

30 tháng 9 2018

Đặt A=\(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{100}}\)

\(\Leftrightarrow A=\dfrac{2}{2\sqrt{2}}+\dfrac{2}{2\sqrt{3}}+....+\dfrac{2}{2\sqrt{100}}\)

\(\Leftrightarrow A=\dfrac{2}{\sqrt{2}+\sqrt{2}}+\dfrac{2}{\sqrt{3}+\sqrt{3}}+....+\dfrac{2}{\sqrt{99}+\sqrt{99}}+\dfrac{2}{\sqrt{100}+\sqrt{100}}\)

\(\Leftrightarrow A=2\left(\dfrac{1}{\sqrt{2}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{99}}+\dfrac{1}{\sqrt{100}+\sqrt{100}}\right)\)

Ta có:

\(\dfrac{1}{\sqrt{2}+\sqrt{2}}< \dfrac{1}{1+\sqrt{2}};\dfrac{1}{\sqrt{3}+\sqrt{3}}< \dfrac{1}{\sqrt{2}+\sqrt{3}}\)

Tường tự, ta có:

\(\dfrac{A}{2}< \dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(A< 2\left(\dfrac{1-\sqrt{2}}{-1}+\dfrac{\sqrt{2}-\sqrt{3}}{-1}+\dfrac{\sqrt{99}-\sqrt{100}}{-1}\right)\)

\(A< -2\left(1-\sqrt{2}+\sqrt{2}-\sqrt{3}+...-\sqrt{99}+\sqrt{99}-\sqrt{100}\right)\)

\(A< -2\left(1-\sqrt{100}\right)\)

\(A< 18\)

Vậy\(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{100}}< 18\)

17 tháng 6 2023

VT tương đương với \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\dfrac{\sqrt{1}-\sqrt{2}}{1-2}+\dfrac{\sqrt{2}-\sqrt{3}}{2-3}+...+\dfrac{\sqrt{99}-\sqrt{100}}{99-100}\)

\(=\sqrt{100}-\sqrt{99}+\sqrt{99}-....-\sqrt{3}+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}\) (kiểu do mẫu số nó có kết quả âm nên đảo lại phép)

\(=10-1=9=VP\)

23 tháng 6 2023

Cảm ơn bạn nhé dù mình biết đáp án rồi :)

6 tháng 8 2021

a)=\(\dfrac{3\sqrt{6}}{2}+\dfrac{2\sqrt{6}}{3}-\dfrac{4\sqrt{6}}{2}\)

   \(=\dfrac{2\sqrt{6}}{3}-\dfrac{\sqrt{6}}{2} \)

   =\(\dfrac{4\sqrt{6}}{6}-\dfrac{3\sqrt{6}}{6}=\dfrac{\sqrt[]{6}}{6}\)

6 tháng 8 2021

b)\(\dfrac{D}{\sqrt{3}}=\dfrac{\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1}{\sqrt{3}+1-1}\)

    \(\dfrac{D}{\sqrt{3}}=\dfrac{2}{\sqrt{3}}\)

     D=2

10 tháng 3 2017

Ta có:

\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(...............\)

\(\dfrac{1}{\sqrt{98}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

Cộng theo vế ta có:

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{99}}>\dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}=\dfrac{99}{10}\)

Lại có \(\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\) suy ra:

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}=\dfrac{100}{10}=10\)

1 tháng 10 2017

Ta có:

1/√1>1/√100=1/10

1/√2>1/√100=1/10

........

1/√100=1/√100=1/10

Nên:

1/√1+1/√2+...+1/√100>1/10+1/10+...+1/10(100 phân số 1/10)

=1/√1+1/√2+..+1/√100>100/10

1/√1+1/√2+..+1/√100>10(đpcm)