Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VT tương đương với \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\dfrac{\sqrt{1}-\sqrt{2}}{1-2}+\dfrac{\sqrt{2}-\sqrt{3}}{2-3}+...+\dfrac{\sqrt{99}-\sqrt{100}}{99-100}\)
\(=\sqrt{100}-\sqrt{99}+\sqrt{99}-....-\sqrt{3}+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}\) (kiểu do mẫu số nó có kết quả âm nên đảo lại phép)
\(=10-1=9=VP\)
Ta có: \(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}=2.\left(\dfrac{1}{\sqrt{2}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{3}}+...+\dfrac{1}{\sqrt{100}+\sqrt{100}}\right)\) (1)
\(\left(1\right)< 2.\left(\dfrac{1}{\sqrt{2}+\sqrt{1}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{100}+\sqrt{99}}\right)\)\(=2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)\(=2\left(-\sqrt{1}+\sqrt{100}\right)=2\left(-1+10\right)=18\)
Vậy:...
Lời giải:
Xét số hạng tổng quát:
\(\frac{\sqrt{n+1}-\sqrt{n}}{n+(n+1)}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n(n+1)}}=\frac{1}{2}(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}})\) theo BĐT Cô-si.
Do đó:
\(x< \frac{1}{2}\left[\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\right]=\frac{1}{2}(1-\frac{1}{\sqrt{100}})< \frac{1}{2}\)
Ta có đpcm.
\(\forall n\in N\) ta luôn có \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\) (*)
\(\Leftrightarrow\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)=1\)
\(\Leftrightarrow\left(n+1\right)-n=1\) (luôn đúng)
Vậy (*) được chứng minh.
Áp dụng với \(n=1;2;3;...;99\) ta có
\(S=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)
\(=\sqrt{100}-1=10-1=9\)
Vậy S là 1 số nguyên.
\(S=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\\ S=\dfrac{1-\sqrt{2}}{1-2}+\dfrac{\sqrt{2}-\sqrt{3}}{2-3}+...+\dfrac{\sqrt{99}-\sqrt{100}}{99-100}\\ S=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\\ S=-1+\sqrt{100}=9\)
Lời giải:
Ta thấy:
\(\frac{1}{2}\text{VP}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{100}}\)
\(> \frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{100}+\sqrt{101}}\)
Mà:
\(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{100}+\sqrt{101}}=\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{2}+\sqrt{3}(\sqrt{3}-\sqrt{2})}+\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{3}+\sqrt{4})(\sqrt{4}-\sqrt{3)}}+...+\frac{\sqrt{101}-\sqrt{100}}{(\sqrt{100}+\sqrt{101})(\sqrt{101}-\sqrt{100})}\)
\(=\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{101}-\sqrt{100}}{101-100}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{101}-\sqrt{100}\)
\(=\sqrt{101}-\sqrt{2}\)
Do đó: \(\frac{1}{2}\text{VP}> \sqrt{101}-\sqrt{2}\Rightarrow \text{VP}>2(\sqrt{101}-\sqrt{2})> 17\) (đpcm)