K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2018

1^5 tỉ<2 vì 1^5 tỉ = 5 tỉ số 1 nhân vs nhau và =1<2 => 1^5 tỉ<2

ko dám đâu,e cồn pải ngồi tù,...

31 tháng 10 2018

trên cành cây chim chết vì em phun thuốc trừ sâu

bao bạn thân chết đói vì em ko cho vay tiền

đá bóng với đá cầu nhảy dây bắn bi trúng đầu

em vẫn thích nhảy lầu đâm đầu vào bãi phân trâu

ko dám đâu ,em còn phải ngồi tù

........

11 tháng 3 2017

\(A=a^5-a=a.\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)=B\left(a^2+1\right)\)B là 3 số tự nhiên liên tiếp \(\left\{{}\begin{matrix}B⋮2\\B⋮3\\B⋮6\end{matrix}\right.\) ta cần c/m A chia cho 5

\(A=B\left(n^2+1\right)=B\left[\left(n^2-4\right)+5\right]=B\left(n^2-2^2\right)=B\left(n-2\right)\left(n+2\right)+5B=C+5B\)C là tích 5 số tự nhiên liên tiếp: \(\left\{{}\begin{matrix}C⋮5\\5B⋮5\end{matrix}\right.\)\(\Rightarrow A⋮5\)

\(\left\{{}\begin{matrix}A⋮5\\A⋮6\end{matrix}\right.\)\(\Rightarrow A⋮30\) => dpcm

20 tháng 1 2022

Nào , cop đi , cop đi 

HT

:)))))))))))

@@@@@@@@@@@

20 tháng 1 2022

 ) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b 

 N* ) ; ( a ; b ) = 1

 b√2=a

 b2.2=a2

 a2 chia hết cho 2 ; mà 2

 là số nguyên tố 

 a chia hết cho 2

 a2 chia hết cho 4

  b2.2 chia hết cho 4

 b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2

 (a;b)=2 mâu thuẫn với (a;b)=1

 Điều giả sử sai

 √2 là số vô tỉ) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b 

 N* ) ; ( a ; b ) = 1

 b√2=a

 b2.2=a2

 a2 chia hết cho 2 ; mà 2

 là số nguyên tố 

 a chia hết cho 2

 a2 chia hết cho 4

  b2.2 chia hết cho 4

 b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2

 (a;b)=2 mâu thuẫn với (a;b)=1

 Điều giả sử sai

 √2 là số vô tỉ

8 tháng 9 2015

giả sử căn 2 là số hữu tỉ thì có dạng m/n (m,n tối giản)

nên 2=m^2/n^2

<=>m^2=2n^2
=>m chia hết cho 2 đặt m=2k nên m^2=4k^2

nên n chia hết cho 2 

từ trên ta có m và n cùng chia hết cho 2 
=>mâu thuẫn giả thuyết
tương tự căn 3 căn 5 cũng như vậy

17 tháng 11 2016

Với y =  0 thi 1 - xy = 0 là bình phương của số hữu tỷ

Với y \(\ne0\)thì ta chia 2 vế cho y4 thì được

\(\frac{x^5}{y^4}+y=2\frac{x^2}{y^2}\)

\(\Leftrightarrow-y=\frac{x^5}{y^4}-2\frac{x^2}{y^2}\)

\(\Leftrightarrow-xy=\frac{x^6}{y^4}-2\frac{x^3}{y^2}\)

\(\Leftrightarrow\Leftrightarrow1-xy=\frac{x^6}{y^4}-2\frac{x^3}{y^2}+1=\left(\frac{x^3}{y^2}-1\right)^2\)

Vậy 1 - xy là bình phương của 1 số hữu tỷ