K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2018

Bài giải

ta có : 10<99 =>10100<99100

31 tháng 10 2018

1.So sánh hai lũy thừa

a;10200 và 99100

b;648và1612

C;6100 và 3170

4 tháng 7 2016

3300 > 2300 ( vì 3 > 2 ).

14 tháng 8 2021

3^200 = (3^2)^100 = 9^100 

2^300 = (2^3)^100 = 8^100 

Vì 9^100 > 8^100 

Vậy 3^200 > 2^300 

9 tháng 9 2021

\(27^{13}=\left(3^3\right)^{13}=3^{39};243^8=\left(3^5\right)^8=3^{40};3^{39}< 3^{40}\Rightarrow27^{13}< 243^8\\ 125^{80}=\left(5^3\right)^{80}=5^{240};25^{118}=\left(5^2\right)^{118}=5^{236};5^{240}>5^{236}\Rightarrow125^{80}>25^{118}\)

9 tháng 9 2021

\(27^{13}< 243^8;125^{80}>25^{118}\)

15 tháng 8 2024

     Bài 1:

(\(x-12\))80 + (y + 15)40 = 0

Vì (\(x-12\))80 ≥ 0 ∀ \(x\); (y + 15)40 ≥ 0 ∀ y

Vậy (\(x-12\))80 + (y + 15)40  = 0 

⇔ \(\left\{{}\begin{matrix}x-12=0\\y+15=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=12\\y=-15\end{matrix}\right.\)

Vậy \(\left(x;y\right)\) = (12; -15)

15 tháng 8 2024

      Bài 2:

      \(\dfrac{x}{y}\) = \(\dfrac{a}{b}\) (đk \(y;b\ne0\))

   ⇒ \(\dfrac{x}{a}\) =  \(\dfrac{y}{b}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      \(\dfrac{x}{a}\) = \(\dfrac{y}{b}\) = \(\dfrac{x-y}{a-b}\) 

   ⇒ \(\dfrac{x}{a}\) = \(\dfrac{x-y}{a-b}\)

  ⇒ \(\dfrac{x-y}{x}\) = \(\dfrac{a-b}{a}\) (đpcm)

  

 

 

 

 

25 tháng 7 2017

Câu 1: 3^23  >    5^12

4 tháng 1 2018

Câu 2: 3^36 < 2^8.11^4

4 tháng 1 2017

mk ko biết giai thông cảm

63^15<34^18

23 tháng 10 2020

\(8^{120}=\left(8^4\right)^{30}\)

\(17^{90}=\left(17^3\right)^{30}\)

\(8^4=\left(2^3\right)^4=2^{12}\)

\(17^3>16^3=\left(2^4\right)^3=2^{12}\)

\(\Rightarrow8^4< 17^3\)

\(\Rightarrow\left(8^4\right)^{30}< \left(17^3\right)^{30}\Rightarrow8^{120}< 17^{90}\)

23 tháng 10 2020

thanks bạn nhiều

3 tháng 11 2017


(-2017)2019 và (-2018)2020
Do số (-2017)2019 có số mũ lẻ nên là số âm
Còn ( -2018)2020 có số mũ chẵn nên là số dương
Ta dễ dàng nhận biết được số âm < số dương 
Vậy (-2017)2019 < (-2018)2020

3 tháng 11 2017

Ta có\(\left(-2017\right)^{2019}=-\left(2017\right)^{2019}< 0\)(1)

          \(\left(-2018\right)^{2020}=2018^{2020}>0\)(2)

Từ (1) và (2)\(\Rightarrow\left(-2017\right)^{2019}< \left(-2018\right)^{2020}\)