K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2018

Với n = 1 thì 1! = 1 = 1^2 là số chính phương.
Với n = 2 thì 1! + 2! = 3 không là số chính phương.
Với n = 3 thì 1! + 2! + 3! = 1 + 1.2 + 1.2.3 = 9 = 33 là số chính phương.
Với n >=4 ta có 1! + 2! + 3! + 4! = 1 + 1.2 + 1.2.3 + 1.2.3.4 = 33, còn 5!; 6!; ... ; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + ... n! có tận cùng bởi chữ số 3, nên nó không phải là số chính phương.
Vậy có 2 số tự nhiên n thoả mãn đề bài là :n = 3

18 tháng 6 2020

cảm ơn bạn

5 tháng 11 2019

a) gs cả 2 số đều lẻ thì tổng chẵn 

mà 2 số nguyên tố lẻ nên >2 => tổng >2 mà tổng chẵn => ko là sô nguyên tố => trái đề bài

suy ra 1 trong 2 số là số chẵn mà 2 số là số nguyên tố => một số =2

mà 2 số này là 2 số nguyên tố liên tiếp nên số còn lại là 3

b) đặt 19n=p ( p nguyên tố);

vì p nguyên tố nên phân tích p thành tích 2 số tự nhiên ta có p=p*1

=> p=19;n=1

c)đặt (p+1)(p+7)=a ( a nguyên tố)

vì a nguyên tố nên phân tích a thành tích 2 số tự nhiên ta có a=a*1; mà p+1<p+7

nên p+1=1 và p+7=a => p=0;a=7

5 tháng 11 2019

Cảm ơn bn nha

9 tháng 8 2019

Em tham khảo!

Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath

Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath 

Ta có : n^3 - n^2 + n - 1 = n^2(n - 1) + (n - 1) = (n^2 + 1)(n - 1).
Để n^3 - n^2 + n - 1 là số nguyên tố thì ta có 2 TH :
TH1 : n^2 + 1 = 1 ; n - 1 nguyên tố => không có n thỏa mãn.
TH2 : n^2 + 1 nguyên tố, n - 1 = 1 => n = 2 (chọn)
Vậy n = 2 để n^3 - n^2 + n - 1 nguyên tố

5 tháng 8 2021

Bài 2

Xét k=0 thì 31k=0(loại)

Xét k=1 thì 31k=31(chọn)

Xét k>1 thì 31k có 2 ước trở lên(loại)

Vậy k=1

5 tháng 8 2021

k=1