STN a chia 4 dư 3, chia 25 dư 7. Hỏi a chia 100 dư?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải :
Vì số đó chia 2 dư 1, chia 3 dư 1, chia 5 dư 4, chia 7 dư 3 nên khi thêm 11 đơn vị vào số đó thì số đó chia hết cho cả 2; 3; 5; 7
Vì số đó là số tự nhiên nhỏ nhất nên số đó khi thêm 11 là số nhỏ nhất chia hết cho 2; 3; 5; 7
BCNN(2; 3; 5; 7} = 210
Số tự nhiên a là 210 - 11 = 199
kết luận :....
a+5 chia hết cho 7
b+4 chia hết cho 7
=> a+5+b+4=a+b+9 chia hết cho 7
a+b+9=(a+b)+2+7 chia hết cho 7 => (a+b)+2 chia hết cho 7 => a+b chia 7 dư 5
a chia 4 du 3 nen a+1+32 chia het cho 3=>a+33 chia het cho 4
a chia 25 du 17 nen a+8+25chia het cho 25=>a+33 chia het cho 25
=>a+33 chia het cho 25.4 hay a+33 chia het cho 100
nen a chia 100 du 100-33=77
vay:a chia100 du 77
Bài 1:
Theo đề bài ta có:
\(a=4q_1+3=9q_2+5\) (\(q_1\) và \(q_2\) là thương trong hai phép chia)
\(\Rightarrow\left[\begin{matrix}a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\\a+13=9q_2+5+13=9\left(q_2+2\right)\left(2\right)\end{matrix}\right.\)
Từ (1) và (2) suy ra: \(a+13=BC\left(4;9\right)\)
Mà \(Ư\left(4;9\right)=1\Rightarrow a+13=BC\left(4;9\right)=4.9=36\)
\(\Rightarrow a+13=36k\left(k\ne0\right)\)
\(\Rightarrow a=36k-13=36\left(k-1\right)+23\)
Vậy \(a\div36\) dư \(23\)
Câu 1
Theo bài ra ta có:
\(a=4q_1+3=9q_2+5\)(q1 và q2 là thương của 2 phép chia)
\(\Rightarrow a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\)
và \(a+13=9q_2+5+13=9.\left(q_2+2\right)\left(2\right)\)
Từ (1) và (2) ta có \(a+13\) là bội của 4 và 9 mà ƯC(4;9)=1
nên a là bội của 4.9=36
\(\Rightarrow a+13=36k\left(k\in N\right)\)
\(\Rightarrow a=36k-13\)
\(\Rightarrow a=36.\left(k-1\right)+23\)
Vậy a chia 36 dư 23
mk chỉ làm đc câu a) bài 1 thôi nha !
Bài 1 .
Ta có :
a) A = (2+22)+(23+24)+...+299+2100
=> A = (1+2).21+(1+2).23+...+(1+2).299
=> A = 3.(21+23+...+299) \(⋮\)3
=> A \(⋮\)3
Ta có a chia 2 dư 1. Chia 3 dư 1; chia 5 dư 4; chia 7 dư 3
a + k chia hết cho 2;3;5;7 (k là hằng số) sao cho: k + 1 chia hết cho 2; k + 1 chia hết cho 3; k + 4 chia hết cho 5; k + 3 chia hết cho 7. Ta thấy cùng 1 số k + 1 chia hết cho 2 và 3. Số k + 1 nhỏ nhất là 6 => k = 5 ko phù hợp cho hai trường hợp còn lại
Vs số k + 1 = 12 ta thấy thoả mãn cả 4 trường hợp => k= 11
=> a + 11 chia hết cho 2; 3;5;7 hay a+11 thuộc BCNN(2;3;5;7)=210
a+11= 210 => a= 210 - 11 => a = 199
Hok tốt nhé!!!!!!
Phần giải biện luận mk ko giỏi nên ko hay lắm ^ - ^
Đáp án:
a= 199
Giải thích các bước giải:
a chia 2 dư 1 nên a+1 chia hết cho 2 hay a+11 cũng chia hết cho 2
a chia 3 dư 1 nên a+2 chia hết cho 3 hay a+2+9=a+11 cũng chia hết cho 3
a chia 5 dư 4 nên a+1 chia hết cho 5, hay a+1+10=a+11 cũng chia hết cho 5
a chia 7 dư 3 nên a+4 chia hết cho 7 hay a+4+7=a+11 chia hết cho 7
Suy ra a+11 cùng chia hết cho 2; 3; 5; 7
a là số nhỏ nhất nên a+11 cũng là số nhỏ nhất
Do đó, a+11=BCNN (2;3;5;7)
Mà 2; 3; 5; 7 đôi một nguyên tố cùng nhau
Do vậy, a+11=2.3.5.7=210
Vậy a=199
tớ chỉ cho một chường hợp tương tư thôi còn cậu tự nghĩ ra:
1 số tự nhiên chia 4 dư 3 , chia 17 dư 9, chia 19 dư 13.Hỏi số đó chia 1292 dư bao nhiêu?
A= 4p+3 = 17m+9= 19n+13
A+25 =4p+28= 17m+34 =19n+38
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19
vậy A+25 chia hết cho 4.17.19 =1292
A chia 1292 dư (1292-25) = 1267