K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2022

a: \(AD=\sqrt{6^2+8^2}=10\left(cm\right)\)

b: Xét ΔBAD vuông tại B có sin BAD=8/10=4/5

nên góc BAD=53 độ

Xét ΔBAD có BA/CB=CD/DA

nên AC là phân giác của góc BAD

c: Xét ΔDAE có góc DAE=góc DEA

nên ΔDAE cân tại D

a: AD=căn 6^2+8^2=10cm

b: Xét ΔBAD vuông tại B có sin BAD=BD/DA=4/5

=>góc BAD=53 độ

Xét ΔBAC vuông tại B có tan BAC=BC/BA=1/2

=>góc BAC=27 độ

a: AB=8cm

b: xét ΔABE vuông tại A và ΔDBE vuông tại D có

BE chung

BA=BD

Do đó: ΔABE=ΔDBE

5 tháng 2 2022

Cảm ơn ạ

21 tháng 5 2018

hình tự vẽ bn nha                                                                                                                                                                               a) ta có:tam giác abc vuông tại a =>  bac = 90                                                                                                                                xét tam giác abc có: abc + acb + cab = 180(t/c)                                                                                                                                      mà bac = 90(cmt)     ;     acb = 36(gt)                                                                                                                                                => 90 +36 + abc = 180                                                                                                                                                                           126 + abc = 180                                                                                                                                                                                abc= 54                                                                                                                                                                               

b) ta có: abd = ebd ( vì bd là phân giác của abc)                                                                                                                                 xét tam giác abd và tam giác ebd có:  ba=be(gt)      ;    abd=ebd(cmt)      :     chung cạnh bd                                                             => tam giác abd = tam giác ebd ( c.g.c) (đpcm)                                                                                                                          

c) ta có: xy vuông góc với ab(gt) => tam giác abk vuông tại b                                                                                                      tam giác abc vuông tại a(gt) => ab vuông góc với ac                                                                                                                        ta có: xy vuông góc với ab (gt)                                                                                                                                                                ab vuông góc với ac(cmt)                                                                                                                                                          => xy song song với ac(t/c)                                                                                                                                                          => bak = abd ( so le trong)                                                                                                                                                         xét tam giác abk vuông tại b và tam giác bad vuông tại a có:  bak=abd(cmt)          ;     chung cạnh ba                                                => tam giác abk= tam giác abd ( cgv-gnk)                                                                                                                                        => ak=bd(2 cạnh tương ứng)                                                                                                                                                      

21 tháng 5 2018

umk mk cảm ơn nhưng có hơi lỗi :(

NV
28 tháng 7 2021

a. Gọi G là trung điểm AD

Tam giác ABC đều \(\Rightarrow\widehat{B}=\widehat{C}=60^0\)

\(CD=BC-BD=40\left(cm\right)\)

Trong tam giác vuông BDI:

\(sinB=\dfrac{ID}{BD}\Rightarrow DI=BD.sinB=20.sin60^0=10\sqrt{3}\left(cm\right)\)

\(cosB=\dfrac{IB}{BD}\Rightarrow IB=BD.cosB=20.cos60^0=10\left(cm\right)\)

Trong tam giác vuông CDK:

\(sinC=\dfrac{DK}{CD}\Rightarrow DK=CD.sinC=40.sin60^0=20\sqrt{3}\left(cm\right)\)

\(cosC=\dfrac{KC}{CD}\Rightarrow KC=CD.cosC=40.cos60^0=20\left(cm\right)\)

NV
28 tháng 7 2021

b. Gọi M là trung điểm BC \(\Rightarrow BM=CM=\dfrac{1}{2}BC=30\left(cm\right)\)

\(DM=BM-BD=10\left(cm\right)\) ; \(AM=\dfrac{AB\sqrt{3}}{2}=30\sqrt{3}\left(cm\right)\)

Áp dụng định lý Pitago cho tam giác vuông ADM:

\(AD=\sqrt{AM^2+DM^2}=20\sqrt{7}\left(cm\right)\)

 \(AG=DG=\dfrac{AD}{2}=10\sqrt{7}\left(cm\right)\)

\(AI=AB-BI=50\left(cm\right)\)

Hai tam giác vuông AEG và ADI đồng dạng (chung góc \(\widehat{IAD}\))

\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AG}{AI}\Rightarrow AE=\dfrac{AG.AD}{AI}=28\left(cm\right)\)

Do EG là trung trực AD \(\Rightarrow DE=AE=28\left(cm\right)\)

Tương tự ta có \(AK=AC-CK=40\left(cm\right)\)

Hai tam giác vuông AGF và AKD đồng dạng

\(\Rightarrow\dfrac{AG}{AK}=\dfrac{AF}{AD}\Rightarrow AF=\dfrac{AG.AD}{AK}=35\left(cm\right)\)

\(\Rightarrow DF=AF=35\left(cm\right)\)

\(EF=EG+FG=\sqrt{AE^2-AG^2}+\sqrt{AF^2-AG^2}=7\sqrt{21}\left(cm\right)\)

28 tháng 1 2016

a)Vì tam giác abc cân ở a =>góc abc=góc acb.mà góc acb =góc ecn (đối đỉnh) =>góc abc=góc ecn.

Xét tam giác bmd và tam giác cne có :bd=ce; góc abc=góc ecn =>tam giác bmd =tam giác ecn(cạnh góc vuông và góc nhọn kề)

=>md=ne.

b)Vì dm và en cung vuông góc với bc =>dm song song với en=>góc dmc=góc enc(so le trong)

xét tam giác dim và tam giác ein có :góc dmc =góc enc;góc mid=góc nie(đối đỉnh);góc mdi=góc nei=90 độ=>tam giác dim=tam giác ein(g.g.g.)

=>di=ie=>i là trung điểm de

c)gọi h là giao của ao với bc.

ta có:xét tam giác abo bằng tam giác aco=>bo=co=>o thuộc trung trực của bc .tương tự a thuộc trung trực của bc=>ao là trung trực bc