giải hệ phương trình:
\(\int^{x+y=5}_{x-y=3}\)
Giải chi tiết hộ mình với, đừng đưa kết quả khoong. Cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{1}{y}=a\)
\(\int^{2x+3a=3}_{x-2a=5}\)
\(\Leftrightarrow\int^{2x+3a=3}_{2x-4a=10}\)
\(\Leftrightarrow\int^{7a=-7}_{x-2a=5}\)
\(\Leftrightarrow\int^{a=-1}_{x+2=5}\)
\(\Leftrightarrow\int^{\frac{1}{y}=-1}_{x=3}\)
\(\Leftrightarrow\int^{x=3}_{y=-1}\)
\(\int^{x-y=3}_{3x-4y=2}\int^{x=3+y}_{3\left(3+y\right)-4y=2}\int^{x=3+y}_{9-y=2}\int^{x=3+y}_{y=7}\int^{x=10}_{y=7}\)
b
\(\int^{\frac{x}{2}-\frac{y}{3}=1}_{5x-8y=3}\int^{3x-2y=6}_{5x-8y=3}\int^{2y=3x-6}_{5x-8y=3}\int^{y=x-2}_{5x-8\left(x-2\right)=3}\int^{y=x-2}_{3x=13}\int^{y=x-2}_{x=\frac{13}{3}}\int^{y=\frac{7}{3}}_{x=\frac{13}{3}}\)
a/ \(\Rightarrow\int^{4x-2y=2}_{-3x+2y=2}\)
Cộng 2 vế ta đc : x = 4
Thay x = 4 vào 2x - y = 1 ta đc:
8 - y = 1
=> y = 7
Vậy x = 4 ; y = 7
b/ \(\Rightarrow\int^{3x+4y=12}_{10x+4y=10}\)
Trừ 2 vế ta đc : 7x = -2 => x = -2/7
Thay x = -2/7 vào 3x + 4y = 12 ta đc :
-6/7 + 4y = 12
=> 4y = 90/7
=> y = 45/14
Vậy x = -2/7 ; y = 45/14
Ta có:
\(\left|6+x\right|\ge0\) với V x
\(\left(3+y\right)^2\ge0\) với V y
\(\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\) với V x,y
Dấu bằng xảy ra khi \(\left|6+x\right|=0\) và \(\left(3+y\right)^2=0\)
\(\Rightarrow6+x=0;3+y=0\)
\(\Rightarrow x=-6;y=-3\)
x - y = -1
y - z = -1
z + x = 8
<=>
x=-1+y
z=1+y
1+y-1+y=8
<=>
x=-1+4=3
z=1+4=5
y=4
Vậy (3;4;5) là nghiệm của hệ phương trình
ĐKXĐ: \(0\le x\le9\)
Bình phương 2 vế ta được:
\(x+9-x+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\)
\(\Leftrightarrow-x^2+9x-2\sqrt{-x^2+9x}=0\)
\(\Leftrightarrow\sqrt{-x^2+9x}\left(\sqrt{-x^2+9x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{-x^2+9x}=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\-x^2+9x-4=0\end{matrix}\right.\)
Tới đây em tự hoàn thành nốt
`(x+1)(x+3)=2x^2-2`
`<=>x^2+x+3x+3=2x^2-2`
`<=>x^2-4x-5=0`
`<=>x^2-5x+x-5=0`
`<=>x(x-5)+(x-5)=0`
`<=>(x-5)(x+1)=0`
`<=>` $\left[ \begin{array}{l}x=5\\x=-1\end{array} \right.$
Vậy `S={5,-1}`
Ta có: \(\left(x+1\right)\left(x+3\right)=2x^2-2\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2x^2+2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x+3-2\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3-2x+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(5-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
Vậy: S={-3;5}
1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)
Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)
\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)
\(P\ge4\sqrt{xy}\left(x+y\right)^2\)
Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\) (*)
Thật vậy, (*)
\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)
\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)
\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)
Áp dụng BĐT Cô-si, ta được:
VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)
Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\).
Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)
Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)
Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)
Cộng 2 vế ta đc : 2x = 8
=> x = 4
Thay vào x + y = 5 ta đc:
4 + y = 5
=> y = 1
Vậy x = 4 ; y = 1