K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2015

Cộng 2 vế ta đc : 2x = 8 

=> x = 4

Thay vào x + y = 5 ta đc:

4 + y = 5

=> y = 1

Vậy x = 4 ; y = 1

9 tháng 1 2016

Đặt \(\frac{1}{y}=a\)
\(\int^{2x+3a=3}_{x-2a=5}\)
\(\Leftrightarrow\int^{2x+3a=3}_{2x-4a=10}\)
\(\Leftrightarrow\int^{7a=-7}_{x-2a=5}\)
\(\Leftrightarrow\int^{a=-1}_{x+2=5}\)
\(\Leftrightarrow\int^{\frac{1}{y}=-1}_{x=3}\)
\(\Leftrightarrow\int^{x=3}_{y=-1}\)

9 tháng 1 2016

Cảm ơn bạn Phạm Thế Mạnh nhiều nha!!

10 tháng 12 2015

\(\int^{x-y=3}_{3x-4y=2}\int^{x=3+y}_{3\left(3+y\right)-4y=2}\int^{x=3+y}_{9-y=2}\int^{x=3+y}_{y=7}\int^{x=10}_{y=7}\)

b

\(\int^{\frac{x}{2}-\frac{y}{3}=1}_{5x-8y=3}\int^{3x-2y=6}_{5x-8y=3}\int^{2y=3x-6}_{5x-8y=3}\int^{y=x-2}_{5x-8\left(x-2\right)=3}\int^{y=x-2}_{3x=13}\int^{y=x-2}_{x=\frac{13}{3}}\int^{y=\frac{7}{3}}_{x=\frac{13}{3}}\)

2 tháng 11 2015

a/ \(\Rightarrow\int^{4x-2y=2}_{-3x+2y=2}\)

Cộng 2 vế ta đc : x = 4

Thay x = 4 vào 2x - y = 1 ta đc:

8 - y = 1

=> y = 7

Vậy x = 4 ; y = 7

b/ \(\Rightarrow\int^{3x+4y=12}_{10x+4y=10}\)

Trừ 2 vế ta đc : 7x = -2 => x = -2/7

Thay x = -2/7 vào 3x + 4y = 12 ta đc :

-6/7 + 4y = 12 

=> 4y = 90/7

=> y = 45/14

Vậy x = -2/7 ; y = 45/14

2 tháng 11 2015

Smile ơi

có cần nah l i k e kko?

18 tháng 4 2016

Ta có:

\(\left|6+x\right|\ge0\) với V x

\(\left(3+y\right)^2\ge0\) với V y

\(\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\) với V x,y

Dấu bằng xảy ra khi \(\left|6+x\right|=0\) và \(\left(3+y\right)^2=0\)

\(\Rightarrow6+x=0;3+y=0\)

\(\Rightarrow x=-6;y=-3\)

10 tháng 1 2016

x - y = -1

y - z = -1

 

z + x = 8

<=>

x=-1+y

z=1+y

1+y-1+y=8

<=>

x=-1+4=3

z=1+4=5

y=4

Vậy (3;4;5) là nghiệm của hệ phương trình

 

10 tháng 1 2016

Cảm ơn Minh Triều nhiều nha !!

 

 

NV
23 tháng 1

ĐKXĐ: \(0\le x\le9\)

Bình phương 2 vế ta được:

\(x+9-x+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\)

\(\Leftrightarrow-x^2+9x-2\sqrt{-x^2+9x}=0\)

\(\Leftrightarrow\sqrt{-x^2+9x}\left(\sqrt{-x^2+9x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{-x^2+9x}=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\-x^2+9x-4=0\end{matrix}\right.\)

Tới đây em tự hoàn thành nốt

27 tháng 12 2020
5x+x=39-3¹¹:3^9 5x+x=39-3² 5x+x=39-9 5x+x=30 x+x=30:5 x+x=6 x+x=3+3 =>x=3 Vậy x=3 23+3x=5^6:5³ 23+3x=5³ 23+3x=125 3x=125-23 3x=102 x=102:3 x=34 Vậy x=34 (6x-39):3=201 6x-39 =201.3 6x-39 =603 6x =603+39 6x =642 x =642:6 x =107 Vậy x=107
28 tháng 2 2021

`(x+1)(x+3)=2x^2-2`

`<=>x^2+x+3x+3=2x^2-2`

`<=>x^2-4x-5=0`

`<=>x^2-5x+x-5=0`

`<=>x(x-5)+(x-5)=0`

`<=>(x-5)(x+1)=0`

`<=>` $\left[ \begin{array}{l}x=5\\x=-1\end{array} \right.$

Vậy `S={5,-1}`

Ta có: \(\left(x+1\right)\left(x+3\right)=2x^2-2\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2x^2+2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x+3-2\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3-2x+2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(5-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

Vậy: S={-3;5}

3 tháng 9 2023

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)