K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

\(\left(x+y\right)^2+3\left(x+y\right)-10=\left[\left(x+y\right)^2+2\left(x+y\right).\dfrac{3}{2}+\dfrac{9}{4}\right]-\dfrac{49}{4}\)

\(=\left(x+y+\dfrac{3}{2}\right)^2-\dfrac{49}{4}=\left(x+y+\dfrac{3}{2}-\dfrac{7}{2}\right)\left(x+y+\dfrac{3}{2}+\dfrac{7}{2}\right)=\left(x+y-2\right)\left(x+y+5\right)\)

\(\left(x+y\right)^2+3\left(x+y\right)-10\)

\(=\left(x+y\right)^2+5\left(x+y\right)-2\left(x+y\right)-10\)

\(=\left(x+y+5\right)\left(x+y-2\right)\)

2 tháng 9 2021

\(\left(x+y+z\right)^2+\left(x+y-z\right)^2-4z^2=\left(x+y+z\right)^2+\left(x+y-z-2z\right)\left(x+y-z+2z\right)=\left(x+y+z\right)^2+\left(x+y-3z\right)\left(x+y+z\right)=\left(x+y+z\right)\left(x+y+z+x+y-3z\right)=\left(x+y+z\right)\left(2x+2y-2z\right)=2\left(x+y+z\right)\left(x+y-z\right)\)

Ta có:

 (x + y + z)2 + (x + y – z)2 – 4z2

\(=\left(x+y-z\right)^2+\left(x+y-z\right)\left(x+y+3z\right)\)

\(=\left(x+y-z\right)\left(x+y+3z+x+y-z\right)\)

\(=2\left(x+y-z\right)\left(x+y+z\right)\)
31 tháng 8 2021

\(A=-x-z\left(x-y\right)+y=-x-xz+zy+y=-x\left(1+z\right)+y\left(1+z\right)=\left(1+z\right)\left(y-x\right)\)

31 tháng 8 2021

A = -(x-y)-z(x-y)=(x-y)(-1-z)=(y-x)(z+1)

29 tháng 10 2019

a) \(x^2-5xy+6y^2\)

\(=x^2-3xy-2xy+6y^2\)

\(=x\left(x-3y\right)-2y\left(x-3y\right)\)

\(=\left(x-2y\right)\left(x-3y\right)\)

b) \(16\left(x-1\right)^2-36y^2\)

\(=\left(4x-4\right)^2-\left(6y\right)^2\)

\(=\left(4x+6y-4\right)\left(4x-6y-4\right)\)

c) \(4\left(x+y\right)-12\left(x+y\right)^2\)

\(=\left(x+y\right)\left[4-12\left(x+y\right)\right]\)

\(=4\left(x+y\right)\left[1-3x-3y\right]\)

12 tháng 9 2021

\(=x\left[x^2\left(x-y\right)^2-36y^2\right]\\ =x\left[x\left(x-y\right)-6y\right]\left[x\left(x-y\right)+6y\right]\\ =x\left(x^2-xy-6y\right)\left(x^2-xy+6y\right)\)

2 tháng 9 2021

\(\left(xy+1\right)^2-\left(x+y\right)^2=\left(xy+1-x-y\right)\left(xy+1+x+y\right)=\left[x\left(y-1\right)-\left(y-1\right)\right]\left[x\left(y+1\right)+\left(y+1\right)\right]=\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)\)

\(\left(xy+1\right)^2-\left(x+y\right)^2\)

\(=\left(xy-x-y+1\right)\left(xy+1+x+y\right)\)

\(=\left(y-1\right)\left(x-1\right)\left(y+1\right)\left(x+1\right)\)

\(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

\(=\left(x^2+5xy\right)^2+10y^2\left(x^2+5xy\right)+24y^4+y^4\)

\(=\left(x^2+5xy+5y^2\right)^2\)