K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2022

a: Xét tứ giác BDEC có

H la trung điểm chung của BE và DC

nên BDEC là hình bình hành

mà BE=DC

nên BDEC là hình chữ nhật

b: Gọi G là trung điểm của BM

Xét ΔBME có BG/BM=BH/BE

nên HG//ME và HG=1/2ME

=>góc GHD=góc EDH=60 độ

=>HG vuông góc với BD

Vì MN//HG

nên góc AMN=góc AGH=60 độ

Gọi giao của MG và DH là F

Xét ΔFGH có góc FGH=góc FHG=60 độ

nên ΔFGH đều

Xét ΔFDM và ΔFHG có

góc FDM=góc FHG

góc DFM=góc HFG

Do đó: ΔFDM đồng dạng với ΔFHG

=>DM/HG=FD/FH=1

=>DM=HG

=>DM=1/2ME

Cm tương tư, ta được NE=1/2ME

=>DM=MN=NE

a, Xét ∆AHC và ∆DHC có:

+CH chung

+\(\widehat{CHA}=\widehat{CHD}\left(=90^o\right)\)

+HA=HC(gt)

\(\Rightarrow\)∆HCA=∆HCD(ch-cgv)

 

19 tháng 7 2023

A B C H D E K

a/ Xét tg vuông AHC và tg vuông DHC có

HC chung

HA = HD (gt)

=> tg AHC = tg DHC (Hai tg vuông có 2 cạnh góc vuông bằng nhau)

b/ K là giao của AE và CD

Xét tg vuông ABC có

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với góc \(\widehat{ABC}\) ) (1)

tg AHC = tg DHC (cmt) => \(\widehat{DCH}=\widehat{ACB}\) (2)

Xét tg vuông ABH và tg vuông AEH có

AH chung; HB = HE (gt) => tg ABH = tg AEH (hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{BAH}=\widehat{EAH}\) (3)

Từ (1) (2) (3) => \(\widehat{EAH}=\widehat{DCH}\) (4)

Xét tg vuông AHE có

\(\widehat{EAH}+\widehat{AEH}=90^o\) (5)

Mà \(\widehat{AEH}=\widehat{CEK}\) (góc đối đỉnh) (6)

Từ (4) (5) (6) \(\Rightarrow\widehat{DCH}+\widehat{CEK}=90^o\Rightarrow\widehat{AKC}=90^o\)

\(\Rightarrow AK\perp CD\) mà \(CH\perp AD\) => E là trực tâm của tg ADC 

c/

tg ABH = tg AEH (cmt) => AB = AE

tg AHC = tg DHC (cmt) => AC = CD

Xét tg ABC có

\(AB+AC>BC\) (trong tg tổng độ dài 2 cạnh lớn hớn độ dài cạnh còn lại)

\(\Rightarrow AE+CD>BC\)

 

 

 

 

 

12 tháng 11 2021

a: Xét tứ giác BDEC có

H là trung điểm của CD

H là trung điểm của BE

Do đó: BDEC là hình bình hành

mà \(\widehat{DBC}=90^0\)

nên BDEC là hình chữ nhật

3 tháng 9 2017

A B C D F M H E

a) Đề sai nha bạn (Phải là cm E là trực tâm của \(\Delta\)BHD)

Xét \(\Delta\)BDC: M là trung điểm của BC, HC=HD => H là trung điểm của CD.

=> HM là đường trung bình của \(\Delta\)BDC => HM//BD.

Mà HM vuông góc với EF => BD cũng vuông góc với EF (Quan hệ song song vuông góc)

Xét \(\Delta\)BHD: BE vuông góc với DH; HE vuông góc với BD ( EF vuông góc BD cmt)

=> E là trực tâm của \(\Delta\)BHD (đpcm)

b) Nối D với E.

Ta có E là trực tâm \(\Delta\)BHD (cmt) => DE vuông góc BH

Mà AC vuông góc BH => DE//AC (Quan hệ song song vuông góc) hay DE//CF

=> ^EDH=^FCH (Cặp góc So le trong)

Xét \(\Delta\)DEH và \(\Delta\)CFH: 

^DHE=^CHF (Đối đỉnh)

HD=HC                                     \(\Rightarrow\)\(\Delta\)DEH=\(\Delta\)CFH  (g.c.g)

^EDH=^FCH

\(\Rightarrow\)HE=HF (2 cạnh tương ứng) => Đpcm.

2 tháng 4 2021

Gọi giao điểm HM với DC là P; giao điểm HN với BC là E 
a) Vì HP vuông góc với IK, mà IK//CD nên DC vuông góc với HP 
=> HP và CE là các đường cao của ▲HCN cắt nhau ở M 
=> M là trực tâm ▲HCN , nên NM là đường cao thứ 3 hay NM vuông góc với HC 
Lại có HC vuông góc với AB (CH là đường cao) 
=> NM//AB 
Xét ▲BDC có M là trung điểm BC và NM//BD nên ND = NC 
b) Do IK//CD nên theo Talet: IH/DN = IK/NC (= AI/AN) 
=> IH/IK = ND/NC = 1 (Vì ND = NC). Vậy IH = HK

a: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có

HC chung

HA=HD

=>ΔAHC=ΔDHC

b: Xet tứ giác ABDE có

H là trung điểm chung của AD và BE

=>ABDE là hình bình hành

=>DE//AB

=>DE vuông góc AC

mà CE vuông góc AD
nên E là trực tâm

29 tháng 5 2021

a,xét tam giác ACH và tam giác DCH có:

HA=HD(gt)

góc CHA= góc CHD(vì CH\(\perp\)AD)

HC chung => tam giác ACH=tam giác DCH(c.g.c)

tam giác ADC có CH vừa là trung tuyến đồng thời là đường cao=>tam giác ADC cân tại C

b,xét tam giác AHB và tam giác DHE có:

góc BHA= góc DHE( đối đỉnh)

HA=HD(cmt), HB=HE(gT)=>tam giác AHB= tam giác DHE(c.g.c)

gọi giao điểm DE với AC là K

vì tam giác AHB= tam giác DHE(cmt)=>góc HED= góc HBA

mà góc HED=góc CEK( đối đỉnh)=> góc HBA=góc CEK

lại có tam giác ABC vuông tại A=> góc HBA+ góc ECK=90 độ=> góc CEK+góc ECK=90 độ=>DK\(\perp AC\)

hay DE \(\perp AC\) mà CE\(\perp AD\)(tại H)=>E là trực tâm tam giác ADC

ăn cơm đã ý c tí mik làm sau

29 tháng 5 2021

help mình

19 tháng 7 2022

Gọi giao điểm HM với DC là P; giao điểm HN với BC là E 
a) Vì HP vuông góc với IK, mà IK//CD nên DC vuông góc với HP 
=> HP và CE là các đường cao của ▲HCN cắt nhau ở M 
=> M là trực tâm ▲HCN , nên NM là đường cao thứ 3 hay NM vuông góc với HC 
Lại có HC vuông góc với AB (CH là đường cao) 
=> NM//AB 
Xét ▲BDC có M là trung điểm BC và NM//BD nên ND = NC 
b) Do IK//CD nên theo Talet: IH/DN = IK/NC (= AI/AN) 
=> IH/IK = ND/NC = 1 (Vì ND = NC). Vậy IH = HK

27 tháng 9 2016

Gọi giao điểm HM với DC là P; giao điểm HN với BC là E 
a) Vì HP vuông góc với IK, mà IK//CD nên DC vuông góc với HP 
=> HP và CE là các đường cao của ▲HCN cắt nhau ở M 
=> M là trực tâm ▲HCN , nên NM là đường cao thứ 3 hay NM vuông góc với HC 
Lại có HC vuông góc với AB (CH là đường cao) 
=> NM//AB 
Xét ▲BDC có M là trung điểm BC và NM//BD nên ND = NC 
b) Do IK//CD nên theo Talet: IH/DN = IK/NC (= AI/AN) 
=> IH/IK = ND/NC = 1 (Vì ND = NC). Vậy IH = HK

7 tháng 10 2018

bn có thể vẽ hình cho mik xem bạn kí hiệu thế nào ko

b: Xét tứ giác ABDE có

H là trung điểm chung của AD và BE

=>ABDE là hình bình hành

=>DE//AB

=>DE vuông góc AC

c: Xét ΔCAD có

CH,DE là đường cao

CH cắt DE tại E

=>E là trực tâm