Cho xyz chia hết cho 37 . Chứng minh zyx chia hết cho 37 .
Nhanh nhất và đúng tặng 3 tích .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta thấy : xyz = 100x +10y+z = 111xyz vì 111 chia hết cho 37 nên xyz chia hết 37
Ta có:xyz=x.y.z=(x.z).y
yxz=y.x.z=y.(x.z)=(x.z).y
Vì xyz chia hết cho 37 nên yxz cũng chia hết cho 37
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Ta lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Ta có: \(\overline{xyz}⋮37\)
\(\Leftrightarrow100x+10y+z⋮37\)
\(\Leftrightarrow111x-11x+10y+z⋮37\)
\(\Leftrightarrow11x-10y-z⋮37\)
Ta có: \(\overline{xyz}-\overline{yzx}=100x+10y+z-100y-10z-x=99x-90y-9z\)
\(\Leftrightarrow\overline{xyz}-\overline{yzx}=9\left(11x-10y-z\right)⋮37\)
\(\Leftrightarrow\overline{yzx}⋮37\)(đpcm)
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Ta lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Có thể phát biểu hay hơn là CMR: Khi hoán vị các chữ số của 1 số có 3 chữ số chia hết cho 37 thì được số mới cũng chia hết cho 37.
Ta có :
A = 9(7x + 4y) - 2(13x + 18y) \(⋮\)37
A = 63x + 36y - 26x - 36y \(⋮\)37
A = 37x \(⋮\)37
Vì 7x + 4y \(⋮\)37 => 9(7x + 4y) \(⋮\)37 => 2(13x + 18y) \(⋮\)37 (tính chất chia hết của 1 hiệu)
Mà (2, 37) = 1 => 13x + 18y \(⋮\)37 (đpcm)
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
nha