Chứng minh rằng
a, 813-243+241 chia hết cho 13
b, 934-2722+8116 chia hết cho 657
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$2a+3b\vdots 13$
$\Leftrightarrow 2a+13a+3b\vdots 13$
$\Leftrightarrow 15a+3b\vdots 13$
$\Leftrightarrow 3(5a+b)\vdots 13$
$\Leftrightarrow 5a+b\vdots 13$
b.
$4a+3b\vdots 11$
$\Leftrightarrow 4a-11a+3b\vdots 11$
$\Leftrightarrow -7a+3b\vdots 11$
$\Leftrightarrow -(7a-3b)\vdots 11$
$\Leftrightarrow 7a-3b\vdots 11$ (đpcm)
a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)
Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11
a/ \(5^{2014}+5^{2013}-5^{2012}=5^{2012}\left(5^2+5-1\right)=5^{2012}.29⋮29\left(đpcm\right)\)
b/ \(7^{500}+7^{499}-7^{498}=7^{498}\left(7^2+7-1\right)=7^{498}.55⋮11\left(đpcm\right)\)
\(23a+13b+17c=14a+9a+7b+6b+14c+3c=.\)
\(=\left(14a+7b+14c\right)+\left(9a+6b+3c\right)\)
\(=7\left(2a+b+2c\right)+3\left(3a+2b+c\right)\)
Ta có
\(7\left(2a+b+2c\right)\)chia hết cho 7
\(3a+2b+c\)chia hết cho 7 nên \(3\left(3a+2b+c\right)\)chia hết cho 7
\(\Rightarrow23a+13b+17c\)chia hết cho 7
\(3a+2b+c⋮7\)
\(\Leftrightarrow30a+20b+10c⋮7\)
\(\Leftrightarrow\left(7a+7b-7c\right)+\left(23a+13b+17c\right)⋮7\)
\(\Leftrightarrow7\left(a+b-c\right)+\left(23a+13b+17c\right)⋮7\)
Ta thấy \(7\left(a+b-c\right)⋮7\)
Để \(7\left(a+b-c\right)+\left(23a+13b+17c\right)⋮7\Leftrightarrow23a+13b+17c⋮7\)(đpcm)
Bạn xem lại đề bài nhé. Với \(a=1,b=9\) thì \(111a+25b=336⋮12\) nhưng \(9a+13b=126⋮̸12\). Mình nghĩ đề bài là chứng minh \(9a+3b⋮12\). Vì \(111a+25b⋮12\) nên \(108a+24b+3a+b⋮12\) hay \(3a+b⋮12\) hay \(9a+3b⋮12\).
Chứng minh: a,222^333+333^222 chia hết cho 13
b, 3^105+4^105 chai hết cho 13 nhưng ko chia hết cho 11
a)
Ta có: \(222^{333}=\left(222^3\right)^{111}\equiv1^{111}=1\left(mod13\right)\)
\(\Rightarrow222^{333}+333^{222}\equiv1+333^{222}=1+\left(333^2\right)^{111}\)
\(\equiv1+12^{111}\equiv1+12^{110}\cdot12\equiv1+\left(12^2\right)^{55}\cdot12\)
\(\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)
Vậy $222^{333}+333^{222}$ chia hết cho $13.$
b) Ta có:
\(3^{105}\equiv\left(3^3\right)^{35}\equiv1^{35}\equiv1\) (mod13)
\(\Rightarrow3^{105}+4^{105}\equiv1+4^{105}\equiv1+\left(4^3\right)^{35}\)
\(\equiv1+12^{35}\equiv1+\left(12^2\right)^{17}\cdot12\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)
Vậy $3^{105}+4^{105}$ chia hết cho $13.$
Lại có:
\(3^{105}\equiv\left(3^3\right)^{35}\equiv5^{35}\equiv\left(5^5\right)^7\equiv1\left(mod11\right)\)
\(4^{105}\equiv\left(4^3\right)^{35}\equiv9^{35}\equiv\left(9^5\right)^7\equiv1\left(mod11\right)\)
Từ đây:\(3^{105}+4^{105}\equiv1+1\equiv2\left(mod11\right)\)
Vậy $3^{105}+4^{105}$ không chia hết cho $11.$
P/s: Rất lâu rồi không giải, không chắc.
Chứng minh: a,222^333+333^222 chia hết cho 13
b, 3^105+4^105 chai hết cho 13 nhưng ko chia hết cho 11
a + 5b = (a - b) + 6b = 6 + 6b = 6(1 + b) chia hết cho 6
a - 13b = (a - b) - 12b = 6 - 12b = 6(1 - 2b) chia hết cho 6
a) Sai đề.
b) \(9^{34}-27^{22}+81^{16}\)
\(=3^{68}-3^{66}+3^{64}\)
\(=3^{64}\left(3^4-3^2+1\right)=3^{64}.73=3^{62}.9.73\)
= \(3^{62}.657⋮657\)