K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2015

A = |x - 2001| + |x - 1|

Có |x - 1| = |1 - x|

=> A = |x - 2001| + |1 - x|

=> A > |x - 2001 + 1 - x| = 2000

Dấu "=" xảy ra <=> (x - 2001)(1 - x) > 0

<=> x - 2001 và 1 - x cùng dấu

TH1: x - 2001 > 0 và 1 - x > 0

=> x > 2001 và x < 1 (vô lí

TH2: x - 2001 < 0 và 1 - x < 0

=> x < 2001 và x > 1

=> 1 < x < 2001 (TM)

KL: Amin = 2000 <=> 1 < x < 2001

12 tháng 11 2018

ta có:

\(A=\left|x-2001\right|+\left|x-1\right|=\left|x-2001\right|+\left|-x+1\right|\)

\(\Rightarrow A=\left|x-2001\right|+\left|-x+1\right|\ge\left|x-2001-x+1\right|=\left|-2000\right|=2000\)

dấu "=" xảy ra khi \(\left(x-2001\right).\left(-x+1\right)\ge0\)

\(\Rightarrow1\le x\le2001\)

Vậy GTNN của A=2000 khi 1<x<2001

10 tháng 5 2017

Giải:

Dễ thấy: \(\left|x-1\right|=\left|1-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A=\left|x-2001\right|+\left|1-x\right|\) \(\ge\left|x-2001+1-x\right|=2000\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2001\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2001\\x\ge1\end{matrix}\right.\)

\(\Leftrightarrow1\le x\le2001\)

Vậy \(A_{min}=2000\Leftrightarrow1\le x\le2001\)

13 tháng 7 2017

A =/x-2001/ + /x-1/
Với x<1 ta có A = 2001 - x +1 -x =2002-2x. Khi đó A>2002
Với 1<= x <= 2001 ta có A = 2001-x +x-1 = 2000
Với x>2001ta có A=x-2001+x -1 = 2x -2000. Khi đó A> 2.2001 - 2000 =2002.
Vậy minA = 2000 khi 1<= x <= 2001.

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\). 2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:\(M=\left(a-b\right)\left(a+b-1\right)\). 3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).1)i, Chứng minh rằng không có giá trị nào của a,b,c để biểu...
Đọc tiếp

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:

\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).

 

2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:

\(M=\left(a-b\right)\left(a+b-1\right)\).

 

3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\)\(OF=b\)\(EF=c\) và \(\widehat{OEF}=\alpha\)\(\widehat{OFE}=\beta\).

1)

i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.

ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).

2)

i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .

ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).

0
26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:
$A=(x-1)(x-2)(x-3)(x-4)=[(x-1)(x-4)][(x-2)(x-3)]=(x^2-5x+4)(x^2-5x+6)$

$=a(a+2)$ (đặt $x^2-5x+4=a$)

$=a^2+2a=(a+1)^2-1=(x^2-5x+5)^2-1\geq -1$

Vậy $S_{\min}=-1$. Giá trị này đạt tại $x^2-5x+5=0$

$\Leftrightarrow x=\frac{5\pm \sqrt{5}}{2}$

AH
Akai Haruma
Giáo viên
27 tháng 12 2023

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:

$|x-2019|+|x-2021|=|x-2019|+|2021-x|\geq |x-2019+2021-x|=2$

$|x-2020|\geq 0$ với mọi $x$

$\Rightarrow A=|x-2019|+|x-2020|+|x-2021|\geq 2+0=2$

Vậy $A_{\min}=2$
Giá trị này đạt được khi: $(x-2019)(2021-x)\geq 0$ và $x-2020=0$

Tức là $x=2020$