K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2018

ta có:

\(A=\left|x-2001\right|+\left|x-1\right|=\left|x-2001\right|+\left|-x+1\right|\)

\(\Rightarrow A=\left|x-2001\right|+\left|-x+1\right|\ge\left|x-2001-x+1\right|=\left|-2000\right|=2000\)

dấu "=" xảy ra khi \(\left(x-2001\right).\left(-x+1\right)\ge0\)

\(\Rightarrow1\le x\le2001\)

Vậy GTNN của A=2000 khi 1<x<2001

1 tháng 11 2015

A = |x - 2001| + |x - 1|

Có |x - 1| = |1 - x|

=> A = |x - 2001| + |1 - x|

=> A > |x - 2001 + 1 - x| = 2000

Dấu "=" xảy ra <=> (x - 2001)(1 - x) > 0

<=> x - 2001 và 1 - x cùng dấu

TH1: x - 2001 > 0 và 1 - x > 0

=> x > 2001 và x < 1 (vô lí

TH2: x - 2001 < 0 và 1 - x < 0

=> x < 2001 và x > 1

=> 1 < x < 2001 (TM)

KL: Amin = 2000 <=> 1 < x < 2001

10 tháng 5 2017

Giải:

Dễ thấy: \(\left|x-1\right|=\left|1-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A=\left|x-2001\right|+\left|1-x\right|\) \(\ge\left|x-2001+1-x\right|=2000\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2001\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2001\\x\ge1\end{matrix}\right.\)

\(\Leftrightarrow1\le x\le2001\)

Vậy \(A_{min}=2000\Leftrightarrow1\le x\le2001\)

13 tháng 7 2017

A =/x-2001/ + /x-1/
Với x<1 ta có A = 2001 - x +1 -x =2002-2x. Khi đó A>2002
Với 1<= x <= 2001 ta có A = 2001-x +x-1 = 2000
Với x>2001ta có A=x-2001+x -1 = 2x -2000. Khi đó A> 2.2001 - 2000 =2002.
Vậy minA = 2000 khi 1<= x <= 2001.

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

AH
Akai Haruma
Giáo viên
27 tháng 12 2023

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:

$|x-2019|+|x-2021|=|x-2019|+|2021-x|\geq |x-2019+2021-x|=2$

$|x-2020|\geq 0$ với mọi $x$

$\Rightarrow A=|x-2019|+|x-2020|+|x-2021|\geq 2+0=2$

Vậy $A_{\min}=2$
Giá trị này đạt được khi: $(x-2019)(2021-x)\geq 0$ và $x-2020=0$

Tức là $x=2020$

16 tháng 7 2018

k) Vì \(\left|4x-3\right|\ge0\left(\forall x\right);\left|5y+7,5\right|\ge0\left(\forall y\right)\)

\(\Rightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}}\)

Vậy CMin = 17,5 khi và chỉ khi x = 3/4 và y = -3/2

n) Ta có: 

\(M=\left|x-2002\right|+\left|x-2001\right|=\left|x-2002\right|+\left|2001-x\right|\ge\left|x-2002+2001-x\right|=1\)

Dấu "=" xảy ra khi \(\left(x-2002\right)\left(2001-x\right)\ge0\) 

<=> x lớn hơn hoặc bằng 2002

Hoặc x bé hơn hoặc bằng 2001

Vậy MMin =1

5 tháng 1 2022

\(A=\left(\left|x-1\right|+\left|2020-x\right|\right)+\left(\left|x-2\right|+\left|2019-x\right|\right)+...+\left(\left|x-1009\right|+\left|1010-x\right|\right)\\ A\ge\left|x-1+2020-x\right|+\left|x-2+2019-x\right|+...+\left|x-1009+1010-x\right|\\ A\ge2019+2017+...+1=\dfrac{2020\left[\left(2019-1\right):2+1\right]}{2}=1020100\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(2020-x\right)\ge0\\...\\\left(x-1009\right)\left(1010-x\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\le x\le2020\\...\\1009\le x\le1010\end{matrix}\right.\)

\(\Leftrightarrow1009\le x\le1010\)

21 tháng 5 2020

Có: \(|x-1|\ge0\)

      \(|x-2|\ge0\)

     .................

      \(|x-2019|\ge0\)

=>  \(A\ge0\)

   Vậy giá trị nhỏ nhất của A là 0

21 tháng 5 2020

Cám ơn bạn nhiều <3