Cho ΔABC, đường cao AH (H nằm giữa B và C). AH = 12cm, HB=9cm, BC = 25cm.
a) CM: ΔABC vuông tại A.
b) Kẻ Bx// AC cắt AH ở D.Tính HD và chứng minh: AB2 = AC.BD.
c) Kẻ DE⊥AC (E ϵ AC), DE cắt BC ở F. CM: BH2 = HF.HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: BH+CH=BC(H nằm giữa B và C)
hay CH=BC-BH=25-9=16(cm)
Áp dụng định lí pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=12^2+9^2=225\)
\(\Leftrightarrow AB=\sqrt{225}=15cm\)
Áp dụng định lí pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+16^2=400\)
hay \(AC=\sqrt{400}=20cm\)
Ta có: \(AB^2+AC^2=15^2+20^2=625cm\)
\(BC^2=25^2=625cm\)
Do đó: \(BC^2=AB^2+AC^2\)(=625)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(định lí pytago đảo)
b) Xét ΔAHC vuông tại H và ΔDHB vuông tại H có
\(\widehat{CAH}=\widehat{BDH}\)(hai góc so le trong, AC//DB)
Do đó: ΔAHC∼ΔDHB(g-g)
⇒\(\frac{AH}{DH}=\frac{HC}{HB}\)
⇒\(\frac{12}{DH}=\frac{16}{9}\)
⇒\(DH=\frac{12\cdot9}{16}=\frac{108}{16}=6,75cm\)
Vậy: DH=6,75cm
Ta có: AC//BD(gt)
AC⊥AB(ΔABC vuông tại A)
Do đó: AB⊥BD(định lí 2 từ vuông góc tới song song)
Xét ΔABD vuông tại B và ΔCAB vuông tại A có
\(\widehat{BAD}=\widehat{ACB}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔABD∼ΔCAB(g-g)
⇒\(\frac{AB}{CA}=\frac{BD}{AB}\)
hay \(AB^2=AC\cdot BD\)(đpcm)
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>DA=DE và BA=BE
=>ΔADE cân tại D và BD là trung trực của AE
c: AD=DE
DE<DC
=>AD<DC
d: AH vuông góc BC
DE vuông góc BC
=>AH//DE
góc AFD=góc BFH=90 độ-góc DBC
góc ADF=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AFD=góc ADF
=>ΔADF cân tại A
a, Xét tứ giác ADHE có :
^A = ^ADH = ^HEA = 900
Vậy tứ giác ADHE là hcn
Vậy AH = DE ( 2 đường chéo bằng nhau )
b, Xét tam giác AEH và tam giác AHC có :
^AEH = ^AHC = 900
^A _ chung
Vậy tam giác AEH ~ tam giác AHC ( g.g )
=> AH/AC = AE/AH => AH^2 = AE.AC (1)
tương tự với tam giác ADH ~ tam giác AHB (g.g)
=> AD/AH = AH/AB => AH^2=AD.AB (2)
Từ (1) ; (2) suy ra AE.AC = AD.AB
c, Xét tam giác ABH và tam giác CAH
^AHB = ^CHA = 900
^ABH = ^CAH ( cùng phụ ^BAH )
Vậy tam giác ABH ~ tam giác CAH (g.g)
=> AH/CH = BH/AH => AH^2 = BH.CH
=> CH = AH^2/BH = 144/9 = 16
=> BC = BH + CH = 25 cm
Diện tích tam giác ABC là : SABC = 1/2 . AH . BC
= 1/2 . 12 . 25 = 150 cm2
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)
b:
ΔAHB vuông tại H có HD là đường cao
nên \(HD\cdot AB=HA\cdot HB\)
ΔAHC vuông tại H có HE là đường cao
nên \(HE\cdot AC=HA\cdot HC\)
\(HD\cdot AB+HE\cdot AC\)
\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)
\(=HA\cdot BC=AB\cdot AC\)
c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
ΔABC vuông tại A có AM là trung tuyến
nên AM=MB=MC
\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)
\(=\widehat{DHA}+\widehat{MCA}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AM vuông góc DE tại I
ΔADE vuông tại A có AI là đường cao
nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)
a: BD\(\perp\)BA
CA\(\perp\)BA
Do đó: BD//CA
Xét ΔEAC có BD//AC
nên \(\dfrac{EB}{BA}=\dfrac{ED}{DC}\)
b:
AC//BD
BD//IK
Do đó: AC//IK
Xét ΔAEI có BD//EI
nên \(\dfrac{DB}{EI}=\dfrac{AB}{AE}\)(1)
Xét ΔCEK có DB//EK
nên \(\dfrac{DB}{EK}=\dfrac{CD}{CE}\left(2\right)\)
\(\dfrac{EB}{EA}=\dfrac{DE}{DC}\)
=>\(\dfrac{EB+EA}{EA}=\dfrac{DE+DC}{DC}\)
=>\(\dfrac{AB}{EA}=\dfrac{CE}{DC}\)(3)
Từ (1),(2),(3) suy ra \(\dfrac{DB}{EI}=\dfrac{DB}{EK}\)
=>EI=EK
Ta có: DE\(\perp\)BC
AH\(\perp\)BC
Do đó: DE//AH
Xét ΔCAH có DE//AH
nên \(\dfrac{CE}{EH}=\dfrac{CD}{DA}\)(1)
Xét ΔABC có BD là phân giác
nên \(\dfrac{CD}{DA}=\dfrac{CB}{BA}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{CE}{EH}=\dfrac{CB}{BA}\)
=>\(CE\cdot BA=EH\cdot BC\)
a: \(AB=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(HD=\dfrac{9^2}{12}=\dfrac{81}{12}=\dfrac{27}{4}\left(cm\right)\)