Tính nhanh
A.3/3x6+3/6x9+3/9x12+...+3/93x96+3/96x99
B.1/2x5+1/5x8+1/8x11+...+1/95*98
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhân cả vế với 3 ta có
Ax3=\(\frac{3}{3x6}\)+\(\frac{3}{6x9}\)+.........+\(\frac{3}{99x102}\)
Ax3=\(\frac{1}{3}\)-\(\frac{1}{6}\)+.....+\(\frac{1}{99}\)-\(\frac{1}{102}\)
Ax=\(\frac{1}{3}\)-\(\frac{1}{102}\)
Ax3=\(\frac{11}{34}\)
A=\(\frac{11}{34}\):3
A=\(\frac{11}{102}\)
gạch đi các số lặp lại thì còn phân số 1/3 và 1/102 lấy \(\frac{1}{3}-\frac{1}{102}=\frac{33}{102}\)
Đặt \(A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}\)
\(A=\dfrac{3}{2}-\dfrac{3}{5}+\dfrac{3}{5}-\dfrac{3}{8}+\dfrac{3}{8}-\dfrac{3}{11}+\dfrac{3}{11}-\dfrac{3}{14}\)
\(A=\dfrac{3}{2}-\dfrac{3}{14}\)
\(A=\dfrac{21}{14}-\dfrac{3}{14}\)
\(A=\dfrac{18}{14}\)
\(A=\dfrac{9}{7}\)
\(A=1\dfrac{2}{7}\)
A = \(\dfrac{7}{3\times6}\) + \(\dfrac{7}{6\times9}\) + \(\dfrac{7}{9\times12}\) + \(\dfrac{7}{12\times15}\)+ .....+\(\dfrac{7}{96\times99}\)
A = \(\dfrac{7}{3}\) x ( \(\dfrac{3}{3\times6}\) + \(\dfrac{3}{6\times9}\)+ \(\dfrac{3}{9\times12}\)+ \(\dfrac{3}{12\times15}\)+......+\(\dfrac{3}{96\times99}\))
A = \(\dfrac{7}{3}\) x ( \(\dfrac{1}{3}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{12}\)+ \(\dfrac{1}{12}\) - \(\dfrac{1}{15}\)+....+ \(\dfrac{1}{96}\) - \(\dfrac{1}{99}\))
A = \(\dfrac{7}{3}\) x ( \(\dfrac{1}{3}\)- \(\dfrac{1}{99}\))
A = \(\dfrac{224}{297}\)
\(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}.\)
\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(A=\frac{1}{2}-\frac{1}{20}\)
\(A=\frac{10}{20}-\frac{1}{20}\)
\(A=\frac{9}{20}\)
Mình ra kết quả thứ nhất là 17/60 thứ 2 là 9/20 các bạn thấy cái nào đúng
Ta có: \(\frac{3x}{2\cdot5}+\frac{3x}{5\cdot8}+\frac{3x}{8\cdot11}+\frac{3x}{11\cdot14}=\frac{1}{21}\)
\(\Leftrightarrow x\cdot\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}\right)=\frac{1}{21}\)
\(\Leftrightarrow x\cdot\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\right)=\frac{1}{21}\)
\(\Leftrightarrow x\cdot\left(\frac{1}{2}-\frac{1}{14}\right)=\frac{1}{21}\)
\(\Leftrightarrow x\cdot\frac{3}{7}=\frac{1}{21}\)
\(\Leftrightarrow x=\frac{1}{21}:\frac{3}{7}=\frac{1}{21}\cdot\frac{7}{3}=\frac{7}{63}=\frac{1}{9}\)
Vậy: \(x=\frac{1}{9}\)
3/3x6 + 3/6x9 + 3/9x12 + 3/12x15 + 3/15x18
= 1/3 - 1/6 + 1/6 - 1/9 + ... + 1/15 - 1/18
= 1/3 - 1/18
= 5/18
\(\frac{3}{3\times6}+\frac{3}{6\times9}+\frac{3}{9\times12}+\frac{3}{12\times15}+\frac{3}{15\times18}\)
=\(3\times\left(\frac{1}{3\times6}+\frac{1}{6\times9}+\frac{1}{9\times12}+\frac{1}{12\times15}+\frac{1}{15\times18}\right)\)
=\(3\times\left(\frac{1}{3}\times\frac{1}{6}+\frac{1}{6}\times\frac{1}{9}+\frac{1}{9}\times\frac{1}{12}+\frac{1}{12}\times\frac{1}{15}+\frac{1}{15}\times\frac{1}{18}\right)\)
=\(3\times\left(\frac{1}{3}\times\frac{1}{18}\right)\)
=\(3\times\frac{1}{54}=\frac{3}{54}=\frac{1}{18}\)
\(B=\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{26\cdot29}\)
\(B=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{29}\)
\(B=\dfrac{1}{2}-\dfrac{1}{29}\)
\(B=\dfrac{27}{58}\)
B= 3/2x5 + 3/5x8+ 3/8x11 + ... + 3/26x29
B= 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/26 - 1/29
B= 1/2-1/29
B=27/58
\(\frac{3}{2\times5}+\frac{2}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{602\times605}\)
\(=\frac{5-2}{2\times5}+\frac{8-5}{5\times8}+\frac{11-8}{8\times11}+...+\frac{605-602}{602\times605}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{602}-\frac{1}{605}\)
\(=\frac{1}{2}-\frac{1}{605}=\frac{603}{1210}\)
\(\frac{4}{3\times7}+\frac{5}{7\times12}+\frac{1}{12\times13}+\frac{2}{13\times15}\)
\(=\frac{7-4}{3\times7}+\frac{12-7}{7\times12}+\frac{13-12}{12\times13}+\frac{15-13}{13\times15}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{3}-\frac{1}{15}=\frac{4}{15}\)
\(A=\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{93.96}+\frac{3}{96.99}\)
\(A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{93}-\frac{1}{96}+\frac{1}{96}-\frac{1}{99}\)
\(A=1-\frac{1}{99}=\frac{98}{99}\)
Vậy A=\(\frac{98}{99}\)
\(B=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{95.98}\)
\(3B=\)\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{95.98}\)
\(3B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\)
\(3B=\frac{1}{2}-\frac{1}{98}=\frac{24}{49}\)
\(B=\frac{24}{49}:3=\frac{8}{49}\)
Vậy B=\(\frac{8}{49}\)
Dấu "." là dấu nhân.
_Học tốt_