K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2019

\(x^8+x^7+1\)

\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)

\(+\left(x^7-x^5+x^4-x^2+x\right)\)

\(+\left(x^6-x^4+x^3-x+1\right)\)

\(=x^2\left(x^6-x^4+x^3-x+1\right)\)

\(+x\left(x^6-x^4+x^3-x+1\right)\)

\(+\left(x^6-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

64x^4+81

=64x^4+144x^2+81-144x^2

=(8x^2+9)^2-(12x)^2

=(8x^2-12x+9)(8x^2+12x+9)

x^8+4y^4

=x^8+4x^4y^2+4y^4-4x^4y^2

=(x^4+2y^2)^2-(2x^2y)^2

=(x^4-2x^2y+2y^2)(x^4+2x^2y+2y^2)

x^8+x^7+1

=x^8+x^7+x^6-x^6+1

=x^6(x^2+x+1)-(x^6-1)

=(x^2+x+1)*x^6-(x-1)(x+1)(x^2+x+1)(x^2-x+1)

=(x^2+x+1)[x^6-(x^2-1)(x^2-x+1)]

=(x^2+x+1)(x^6-x^4+x^2-x^2+x^2-x+1)

=(x^2+x+1)(x^6-x^4+x^2-x+1)

25 tháng 4 2019

24 tháng 7 2017

phương pháp này mình gọi là phương pháp nhẩm nghiệm:

- Nếu tổng tất cả các hệ số bằng o thì đa thức có 1 nghiệm là x=1 hay chứa thừa số là x-1

- Nếu tổng tất cả các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ thì đa thức có một nghiệm là x=-1 hay chứa thừa số là x+1

26 tháng 7 2015

cái đó thì tớ ko bik 

16 tháng 7 2018

3x^2 - 8x + 4

= 3x^2 - 6x - 2x + 4

=( 3x^2 - 6x ) - ( 2x - 4)

=3x(x-2) - 2(x-2)

=(3x-2) - (x-2)

11 tháng 8 2015

x3-3x2-4=

6 tháng 7 2016

a) 8x2 - 2x - 1

=8x2+2x-4x-1

=2x.(4x+1)-(4x+1)

=(4x+1)(2x-1)

b) x- y2 + 10x - 6y + 16

=x2+10x+25-y2-6y-9

=(x+5)2-(y+3)2

=(x+5-y-3)(x+5+y+3)

=(x-y+2)(x+y+8)

10 tháng 8 2023

Bài 2:

1)  \(x^2-4x+4=\left(x-2\right)^2\)

2) \(x^2-9=x^2-3^2=\left(x-3\right)\left(x+3\right)\)

3) \(1-8x^3=\left(1-2x\right)\left(1+2x+4x^2\right)\)

4) \(\left(x-y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)

5) \(\dfrac{1}{25}x^2-64y^2=\left(\dfrac{1}{5}x-8y\right)\left(\dfrac{1}{5}x+8y\right)\)

6) \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)

10 tháng 8 2023

mình cảm ơn nha

 

30 tháng 8 2021

a4 + a2 +1

= (a2)2 + 2a2 +1 -a2

= (a2 +1)2 -a2

= (a2 +1 -a)(a2 +1 +a)