thu gọn bth
a, \(\sqrt{33-12\sqrt{6}}+\sqrt{15+6\sqrt{6}}\)
b, \(\dfrac{\sqrt{99}}{\sqrt{11}}+\dfrac{\sqrt{28}}{\sqrt{7}}-\sqrt{\sqrt{81}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
= \(2\sqrt{3}-10\sqrt{3}-\dfrac{\sqrt{3}\cdot\sqrt{11}}{\sqrt{11}}+5\sqrt{\dfrac{4}{3}}\)
= \(2\sqrt{3}-10\sqrt{3}-\sqrt{3}+5\sqrt{\dfrac{12}{3^2}}\)
= \(2\sqrt{3}-10\sqrt{3}-\sqrt{3}+5\dfrac{2\sqrt{3}}{3}\)
= \(2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\dfrac{10\sqrt{3}}{3}\)
= \(-9\sqrt{3}+\dfrac{10\sqrt{3}}{3}=\dfrac{-27\sqrt{3}}{3}+\dfrac{10\sqrt{3}}{3}=\dfrac{-17\sqrt{3}}{3}\)
b, \(\sqrt{150}+\sqrt{1,6}\cdot\sqrt{60}+4.5\sqrt{2\dfrac{2}{3}}-\sqrt{6}\)
= \(5\sqrt{6}+\dfrac{2\sqrt{10}}{5}\cdot2\sqrt{15}+4,5\sqrt{\dfrac{8}{3}}-\sqrt{6}\)
= \(5\sqrt{6}+4\sqrt{6}+4,5\sqrt{\dfrac{24}{3^2}}-\sqrt{6}\)
= \(5\sqrt{6}+4\sqrt{6}+4,5\cdot\dfrac{2\sqrt{6}}{3}-\sqrt{6}\)
= \(5\sqrt{6}+4\sqrt{6}+3\sqrt{6}-\sqrt{6}=11\sqrt{6}\)
c, \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\cdot\sqrt{7}+\sqrt{84}\)
= \(\left(2\sqrt{7}-2\sqrt{3}+\sqrt{7}\right)\cdot\sqrt{7}+2\sqrt{21}\)
= \(\left(3\sqrt{7}-2\sqrt{3}\right)\cdot\sqrt{7}+2\sqrt{21}\)
= \(21-2\sqrt{21}+2\sqrt{21}=21\)
d, \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
= \(6+2\sqrt{30}+5-2\sqrt{30}=11\)
LG a
12√48−2√75−√33√11+5√1131248−275−3311+5113;
Phương pháp giải:
+ Cách đổi hỗn số ra phân số: abc=a.c+bcabc=a.c+bc.
+ Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:
√A2.B=A√BA2.B=AB, nếu A≥0, B≥0A≥0, B≥0.
√A2.B=−A√BA2.B=−AB, nếu A<0, B≥0A<0, B≥0.
+ √ab=√a√bab=ab, với a≥0, b>0a≥0, b>0.
+ √a.√b=√aba.b=ab, với a, b≥0a, b≥0.
+ A√B=A√BBAB=ABB, với B>0B>0.
Lời giải chi tiết:
Ta có:
12√48−2√75−√33√11+5√1131248−275−3311+5113
=12√16.3−2√25.3−√3.11√11+5√1.3+13=1216.3−225.3−3.1111+51.3+13
=12√42.3−2√52.3−√3.√11√11+5√43=1242.3−252.3−3.1111+543
=12.4√3−2.5√3−√3+5√4√3=12.43−2.53−3+543
=42√3−10√3−√3+5√4.√3√3.√3=423−103−3+54.33.3
=2√3−10√3−√3+52√33=23−103−3+5233
=2√3−10√3−√3+10√33=23−103−3+1033
=(2−10−1+103)√3=(2−10−1+103)3
=−173√3=−1733.
LG b
√150+√1,6.√60+4,5.√223−√6;150+1,6.60+4,5.223−6;
Phương pháp giải:
+ Cách đổi hỗn số ra phân số: abc=a.c+bcabc=a.c+bc.
+ Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:
√A2.B=A√BA2.B=AB, nếu A≥0, B≥0A≥0, B≥0.
√A2.B=−A√BA2.B=−AB, nếu A<0, B≥0A<0, B≥0.
+ √ab=√a√bab=ab, với a≥0, b>0a≥0, b>0.
+ √a.√b=√aba.b=ab, với a, b≥0a, b≥0.
+ A√B=A√BBAB=ABB, với B>0B>0.
Lời giải chi tiết:
Ta có:
√150+√1,6.√60+4,5.√223−√6150+1,6.60+4,5.223−6
=√25.6+√1,6.60+4,5.√2.3+23−√6=25.6+1,6.60+4,5.2.3+23−6
=√52.6+√1,6.(6.10)+4,5√83−√6=52.6+1,6.(6.10)+4,583−6
=5√6+√(1,6.10).6+4,5√8√3−√6=56+(1,6.10).6+4,583−6
=5√6+√16.6+4,5√8.√33−√6=56+16.6+4,58.33−6
=5√6+√42.6+4,5√8.33−√6=56+42.6+4,58.33−6
=5√6+4√6+4,5.√4.2.33−√6=56+46+4,5.4.2.33−6
=5√6+4√6+4,5.√22.63−√6=56+46+4,5.22.63−6
=5√6+4√6+4,5.2√63−√6=56+46+4,5.263−6
=5√6+4√6+9√63−√6=56+46+963−6
=5√6+4√6+3√6−√6=56+46+36−6
=(5+4+3−1)√6=11√6.=(5+4+3−1)6=116.
Cách 2: Ta biến đổi từng hạng tử rồi thay vào biểu thức ban đầu:
+ √150=√25.6=5√6150=25.6=56
+ √1,6.60=√1,6.(10.6)=√(1,6.10).6=√16.61,6.60=1,6.(10.6)=(1,6.10).6=16.6
=4√6=46
+ 4,5.√223=4,5.√2.3+23=4,5.√83=4,5√8.334,5.223=4,5.2.3+23=4,5.83=4,58.33
=4,5.√4.2.33=4,5.2.√63=9.√63=3√6.=4,5.4.2.33=4,5.2.63=9.63=36.
Do đó:
√150+√1,6.√60+4,5.√223−√6150+1,6.60+4,5.223−6
=5√6+4√6+3√6−√6=56+46+36−6
=(5+4+3−1)√6=11√6=(5+4+3−1)6=116
LG c
(√28−2√3+√7)√7+√84;(28−23+7)7+84;
Phương pháp giải:
+ Cách đổi hỗn số ra phân số: abc=a.c+bcabc=a.c+bc.
+ Hằng đẳng thức số 1: (a+b)2=a2+2ab+b2(a+b)2=a2+2ab+b2.
+ Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:
√A2.B=A√BA2.B=AB, nếu A≥0, B≥0A≥0, B≥0.
√A2.B=−A√BA2.B=−AB, nếu A<0, B≥0A<0, B≥0.
+ √ab=√a√bab=ab, với a≥0, b>0a≥0, b>0.
+ √a.√b=√aba.b=ab, với a, b≥0a, b≥0.
+ A√B=A√BBAB=ABB, với B>0B>0.
Lời giải chi tiết:
Ta có:
=(√28−2√3+√7)√7+√84=(28−23+7)7+84
=(√4.7−2√3+√7)√7+√4.21=(4.7−23+7)7+4.21
=(√22.7−2√3+√7)√7+√22.21=(22.7−23+7)7+22.21
=(2√7−2√3+√7)√7+2√21=(27−23+7)7+221
=2√7.√7−2√3.√7+√7.√7+2√21=27.7−23.7+7.7+221
=2.(√7)2−2√3.7+(√7)2+2√21=2.(7)2−23.7+(7)2+221
=2.7−2√21+7+2√21=2.7−221+7+221
=14−2√21+7+2√21=14−221+7+221
=14+7=21=14+7=21.
LG d
(√6+√5)2−√120.(6+5)2−120.
Phương pháp giải:
+ Cách đổi hỗn số ra phân số: abc=a.c+bcabc=a.c+bc.
+ Hằng đẳng thức số 1: (a+b)2=a2+2ab+b2(a+b)2=a2+2ab+b2.
+ Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:
√A2.B=A√BA2.B=AB, nếu A≥0, B≥0A≥0, B≥0.
√A2.B=−A√BA2.B=−AB, nếu A<0, B≥0A<0, B≥0.
+ √a.√b=√aba.b=ab, với a, b≥0a, b≥0.
Lời giải chi tiết:
Ta có:
(√6+√5)2−√120(6+5)2−120
=(√6)2+2.√6.√5+(√5)2−√4.30=(6)2+2.6.5+(5)2−4.30
=6+2√6.5+5−2√30=6+26.5+5−230
=6+2√30+5−2√30=6+5=11.=6+230+5−230=6+5=11.
\(A=\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\left(2+\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}\right)\)
\(A=\left[2-\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}\right]\left[2+\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}\right]\)
\(A=\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)\)
\(A=2^2-\left(\sqrt{5}\right)^2\)
\(A=4-5\)
\(A=-1\)
____
\(B=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3+\sqrt{6}\right)\left(3-\sqrt{6}\right)}\right]\left(\sqrt{6}+11\right)\)
\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right]\left(\sqrt{6}+11\right)\)
\(B=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)
\(B=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)
\(B=6-121\)
\(B=-115\)
a) \(\sqrt{\dfrac{1}{8}}\cdot\sqrt{2}\cdot\sqrt{125}\cdot\sqrt{\dfrac{1}{5}}\) = \(\sqrt{\dfrac{1}{8}\cdot2}.\sqrt{125\cdot\dfrac{1}{5}}=\sqrt{\dfrac{1}{4}}.\sqrt{25}=\dfrac{1}{2}\cdot5=2,5\)
b)\(\sqrt{\sqrt{2}-1}.\sqrt{\sqrt{2}+1}=\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\sqrt{2-1}=1\)
Câu 1:
a: \(\dfrac{2}{5}\sqrt{75}-0,5\cdot\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\cdot\sqrt{12}\)
\(=\dfrac{2}{5}\cdot5\sqrt{3}-0,5\cdot4\sqrt{3}+10\sqrt{3}-\dfrac{2}{3}\cdot2\sqrt{3}\)
\(=2\sqrt{3}-2\sqrt{3}+10\sqrt{3}-\dfrac{4}{3}\sqrt{3}\)
\(=10\sqrt{3}-\dfrac{4}{3}\sqrt{3}=\dfrac{26}{3}\sqrt{3}\)
b: \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)
\(=\dfrac{\sqrt{3}\cdot3\sqrt{3}-2\sqrt{3}}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3\left(3-\sqrt{6}\right)}{9-6}\)
\(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+3-\sqrt{6}\)
\(=\dfrac{\sqrt{3}}{\sqrt{2}}+3-\sqrt{6}=3-\dfrac{\sqrt{6}}{2}\)
c: \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
=\(\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{24-2\cdot2\sqrt{6}\cdot3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
Bài 2:
a:
b: Phương trình hoành độ giao điểm là:
\(3x+2=-x-4\)
=>4x=-6
=>x=-3/2
Thay x=-3/2 vào y=-x-4, ta được:
\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=-\dfrac{5}{2}\)
Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)
c: Vì (d2)//(d) nên \(\left\{{}\begin{matrix}a=-1\\b\ne-4\end{matrix}\right.\)
Vậy: (d2): y=-x+b
Thay x=-2 và y=5 vào (d2), ta được:
\(b-\left(-2\right)=5\)
=>b+2=5
=>b=5-2=3
Vậy: (d2): y=-x+3
a: \(=\dfrac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}-3\sqrt{3}+\dfrac{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}\)
\(=\sqrt{3}-3\sqrt{3}+\sqrt{3}=-\sqrt{3}\)
b: \(=\left(\left(2-2\sqrt{5}\right)\left(\sqrt{5}+2\right)+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(2\sqrt{5}+4-10-4\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(-2\sqrt{5}+\sqrt{3}-6\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=-20+2\sqrt{15}+\sqrt{15}-3-6\sqrt{5}+6\sqrt{3}\)
\(=-23+3\sqrt{15}-6\sqrt{5}+6\sqrt{3}\)
a, \(\dfrac{2}{5}\sqrt{75}-0,5\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\sqrt{12}=2\sqrt{3}-2\sqrt{3}+10\sqrt{3}-\dfrac{4}{3}\sqrt{3}=\dfrac{26}{3}\sqrt{3}\)
b, \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3}{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{6}}{2}+\dfrac{\sqrt{3}}{\sqrt{3}+\sqrt{2}}\)
\(=\dfrac{\sqrt{6}}{2}+\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\dfrac{\sqrt{6}}{2}+3-\sqrt{6}=\dfrac{6-\sqrt{6}}{2}\)
c, \(3\sqrt{2}-2\sqrt{3}+2\sqrt{3}+3\sqrt{2}=6\sqrt{2}\)
d, \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{\left(\sqrt{6}-3\right)^2}+\sqrt{\left(2\sqrt{6}+3\right)^2}\)
\(=-\sqrt{6}+3+2\sqrt{6}+3=\sqrt{6}+6\)
e, Ghi đúng đề.
\(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=\dfrac{a+b-2\sqrt{ab}+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}=2\sqrt{b}\)
a) \(\sqrt{33-12\sqrt{6}}+\sqrt{15+6\sqrt{6}}=\sqrt{24-2.2\sqrt{6}.3+9}+\sqrt{6+2.\sqrt{6}.3+9}=\sqrt{\left(2\sqrt{6}-3\right)^2}+\sqrt{\left(\sqrt{6}+3\right)^2}=\left|2\sqrt{6}-3\right|+\left|\sqrt{6}+3\right|=2\sqrt{6}-3+\sqrt{6}+3=3\sqrt{6}\)
b) \(\dfrac{\sqrt{99}}{\sqrt{11}}+\dfrac{\sqrt{28}}{\sqrt{7}}-\sqrt{\sqrt{81}}=\sqrt{\dfrac{99}{11}}+\sqrt{\dfrac{28}{7}}-\sqrt{9}=\sqrt{9}+\sqrt{4}-\sqrt{9}=\sqrt{4}=2\)
a) \(\sqrt{33-12\sqrt{6}}\) + \(\sqrt{15+6\sqrt{6}}\)
= \(\sqrt{9-2.3.2\sqrt{6}+24}\)+\(\sqrt{9+2.3\sqrt{6}+6}\)
= \(\sqrt{\left(3-2\sqrt{6}\right)^2}\)+\(\sqrt{\left(3+\sqrt{6}\right)^2}\)
=\(\left|3-2\sqrt{6}\right|+\left|3+\sqrt{6}\right|\)
=\(2\sqrt{6}-3+3+\sqrt{6}\)
=\(\sqrt{6}\)
b)\(\dfrac{\sqrt{99}}{\sqrt{11}}\)+\(\dfrac{\sqrt{28}}{\sqrt{7}}\)\(-\sqrt{\sqrt{81}}\)
= \(\sqrt{\dfrac{99}{11}}+\sqrt{\dfrac{28}{7}}-3\)
=\(\sqrt{9}+\sqrt{4}-3\)
= 3+2-3
= 2