K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác AMCN có

AM//CN

AM=CN

DO đó: AMCN là hình bìnhhành

Suy ra: AC cắt MN tại trung điểm của mỗi đường(1)

Vì ABCD là hình bình hành

nên AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,BD,MN đồng quy

5 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha :

https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 200 người nhận rồi

OK có 2 cái phê tôi là phụ trách

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.1) C/m : tứ giác AMND là hình bình hành.2) C/m: tứ giác AMCN là hình bình hành.B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.1) C/m: O là trung điểm của EF.2) C/m: tứ  giác AECF là hình bình hành3) C/m: tứ giác BDEF là hình bình hành.B3: cho hình bình...
Đọc tiếp

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.

1) C/m : tứ giác AMND là hình bình hành.

2) C/m: tứ giác AMCN là hình bình hành.

B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.

1) C/m: O là trung điểm của EF.

2) C/m: tứ  giác AECF là hình bình hành

3) C/m: tứ giác BDEF là hình bình hành.

B3: cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=CF. Gọi O là giao điểm của AC và BD.

1) C/m: tứ giác AECF là hình bình hành.

2) C/m: O là trung điểm của EF.

B4: Cho hình bình hành ABCD có hai đường chéo AB và CD cắt nhau tại O. Gọi M,N,P,Q lần lượt là tủng điểm của các đoạn OA, OB, OC, OD.

1)C/m : tứ giác MNPQ là hình bình hành.

2) C/m: các tứ giác ANCQ , BPDM là các hình bình hành.

Giúp mik với nha, thanks !!!!

3
20 tháng 8 2017

đã hỏi thì hỏi ít thôi. hỏi lắm thế

20 tháng 8 2017

hỏi 1 lần luôn cho lẹ, k cần mn giải hết đâu, biết bài nào thì giải giúp th

21 tháng 8 2018

Tự vẽ hình nha

a) Vì M là trung điểm AB, N là trung điểm CD

=> MN là đường trung bình

=> MN // AD // BC

 và MN = ( AD + BC ) : 2 = AD = BC ( vì ABCD là hình thoi nên AD = BC )

Xét tứ giác AMND có MN // AD và MN = AD

=> AMND là hình bình hành ( đpcm )

b) Vì MN // BC và MN = BC

=> BMNC là hình bình hành

=> hai đường chéo BN và CM cắt nhau tại L là trung điểm mỗi đường ( đpcm )

 c) Xét tam giác DAM và tam giác BCN có

  AD = BC 

góc DAM = góc BCN ( trong hình thoi và hình bình hành, hai góc đối bằng nhau )

AM = CN = ( AB/2 = DC/2 do AB = DC )

=> tam giác DMA = tam giác BNC ( c-g-c )

=> góc AMD = góc BNC ( c g t ư )

Có AB // DC 

=> góc AMD = góc MDN ( cặp góc so le trong )

mà góc AMD = góc BNC 

=> góc BNC = góc MDN 

mà hai góc này đồng vị

=> MD // BN

mà MB // DN ( AB // CD )

=> MBND là hình bình hành 

=> BD cắt MN tại trung điểm O của MN

Chứng minh tương tự với hình AMCN 

=> AC cắt MN tại trung điểm O của MN

Vì M là trung điểm AB, L là trung điểm BN

=> ML là đường trung bình trong tam giác BAN

=> ML // AN

và ML = 1/2 AN = AK ( AMND là hình bình hành, K là giao hai đường chéo nên K là trung điểm AN )

Xét tứ giác MLNK có ML // KN, ML = KN

=> MLKN là hình bình hành 

=> MN giao KL tại trung điểm O của MN

Vì bốn đường thẳng AC, BD, MN , KL cùng đi qua O

=> chúng đồng quy ( đpcm )

27 tháng 10 2021

a: Xét tứ giác AECF có

O là trung điểm của AC

O là trung điểm của FE

Do đó: AECF là hình bình hành

27 tháng 10 2021

hum

22 tháng 8 2021

1) Xét tam giác ABC có:

M là trung điểm của AB( gt)

N là trung điểm của BC( gt)

=> MN là đường trung bình của tam giác ABC

=> \(MN=\dfrac{1}{2}AC\left(1\right)\)

Xét tam giác ADC có:

Q là trung điểm của AD( gt)

P là trung điểm của DC( gt)

=> PQ là đường trung bình của tam giác ADC

=> \(PQ=\dfrac{1}{2}AC\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow MN=PQ\)

b) Xét tam giác ABD có:

M là trung điểm của AB (gt)

F là trung điểm của BD(gt)

=> MF là đường trung bình của tam giác ABD

=> MF//AD và \(MF=\dfrac{1}{2}AD\) (3)

CMTT => EP là đường trung bình của tam giác ADC

=> EP//AD và \(EP=\dfrac{1}{2}AD\left(4\right)\)

Từ (3),(4) => Tứ giác MEPF là hình bình hành

 

22 tháng 8 2021

c) Ta có: MN là đường trung bình của tam giác ABC(cmt)

\(\Rightarrow\left\{{}\begin{matrix}MN=\dfrac{1}{2}AC\\MN//AC\end{matrix}\right.\)(5)

Ta có: PQ là đường trung bình của tam giác ABC(cmt)

\(\Rightarrow\left\{{}\begin{matrix}PQ=\dfrac{1}{2}AC\\PQ//AC\end{matrix}\right.\)(6)

Từ (5),(6) => Tứ giác MNPQ là hình bình hành

=> MP cắt PQ tại trung điểm của MP(t/c)

Mà EF cắt MP tại trung điểm MP( tứ giác MEPF là hình bình hành)

=> MP,NQ,EF đồng quy

17 tháng 12 2017

Cho tứ giác ABCD là hình bình hành. Từ A kẻ AE vuông góc với BD, từ C kẻ CF vuông góc với BD(E,F thuộc BD)

a) Chứng minh ΔAED=ΔCFB

b) Gọi O là trung điểm AC. Chứng minh từ giác AECF là hình bình hành, từ đó suy ra O là trung điểm EF

27 tháng 9 2019

cần câu c thôi giúp vs