C= 4x(x+y)(x+y+z)(x+z)+y\(^2\) z\(^2\)
Cm C là 1 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2\)
\(=4\left(x^2+xy+xz\right)\left(x^2+xy+xz+yz\right)+y^2z^2\left(1\right)\)
Đặt \(a=x^2+xy+xz\)và \(b=yz\)ta có:
\(\left(1\right)\Rightarrow C=4a\left(a+b\right)+b^2=b^2+4ab+4a^2=\left(b+2a\right)^2\)
Vậy C là một số chính phương.
B3 : t chỉ m r á :3
B4 :
Ta có :
C= 4x ( x + y ) ( x + y + z ) ( y + z ) + y2x2
= 4x ( x + y + z ) ( x + y ) ( x + z ) + y2x2
= 4 ( x2 + xy + xz ) ( x2 + xy + xz + yz ) + y2x2
Đặt a = x2 + xy + xz và b= yz , ta có :
⇒ C = 4a( a + b ) + b2
= b2 + 4ab + 4a2
= ( b + a )2
⇒ C là số chính phương
Chúc mừng m đã ghi xong bài , nhớ tick cho t nhoa bff!
B= 4(x2 + xy + xz)(x2 + xy + xz + yz) + y2z2
đặt x2 + xy + xz = m , ta có
B = 4m(m + yz) + y2z2 = 4m2 + 4myz + y2z2
B = (2m + yz)2 = (2x2 + 2xy + 2xz + yx)2
x,y,z la cac so nguyen thif B la 1 so chinh phuong
\(M=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4\left(x^2+xy+xz\right)\left(x^2+xy+xz+yz\right)+y^2z^2\)
Đặt \(x^2+xy+xz=a\) , ta có:
\(M=4a\left(a+yz\right)+y^2z^2=4a^2+4ayz+y^2z^2=\left(2a+yz\right)^2\)
\(M=\left(2x^2+2xy+2xz+yz\right)^2\)là số chính phương với \(x;y;z\in N\)
\(C=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2=4\left(x^2+xy+xz\right)\left(x^2+xz+xy+yz\right)+y^2z^2\)
Đặt \(x^2+xy+xz=t\), ta có:
\(C=4t\left(t+yz\right)+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t\right)^2+2.2t.yz+\left(yz\right)^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\)
=>đpcm