\(^2\) z\(^2\)

Cm C là  1 số ch...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

\(C=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2=4\left(x^2+xy+xz\right)\left(x^2+xz+xy+yz\right)+y^2z^2\)

Đặt \(x^2+xy+xz=t\), ta có:

\(C=4t\left(t+yz\right)+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t\right)^2+2.2t.yz+\left(yz\right)^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\)

=>đpcm

1 tháng 8 2018

TÔI CHƯA GIẢI ĐƯỢC

7 tháng 5 2018

nhân cả 2 vế với 2 rồi bunhia

6 tháng 4 2018

câu c là \(\dfrac{1}{2}\)(x+y+z) nhé, mih chép nhầm

5 tháng 1 2018

a, x^3-y^2-y=1/3

=> x^3 = y^2+y+1/3 = (y^2+y+1/4)+1/12 = (y+1/2)^2+1/12 > 0

=> x > 0 

Tương tự : y,z đều > 0

Tk mk nha

6 tháng 1 2018

ta có hpt

<=>\(\hept{\begin{cases}x^3=\left(y+\frac{1}{2}\right)^2+\frac{1}{12}\\y^3=\left(z+\frac{1}{2}\right)^2+\frac{1}{12}\\z^3=\left(x+\frac{1}{2}\right)^2+\frac{1}{12}\end{cases}}\)

Vì vai trò x,y,z như nhau và x,y,z đều >0 ( câu a)

Giả sử \(x\ge y\Rightarrow x^3\ge y^3\Rightarrow\left(y+\frac{1}{2}\right)^2\ge\left(z+\frac{1}{2}\right)^2\) (1)

=>\(y+\frac{1}{2}\ge z+\frac{1}{3}\)

=>\(y\ge z\) (2)

với y>= z, từ pt(2) =>z>=x (3)

Từ 91),(2),(3)

=> x=y=z>0 (ĐPCM)

Với x=y=z>0, thay vào pt(1), Ta có 

\(x^3-x^2-x-\frac{1}{3}=0\Leftrightarrow3x^3-3x^2-3x-1=0\)

<=>\(4x^3=x^3+3x^2+3x+1\Leftrightarrow4x^3=\left(x+1\right)^3\)

<=>\(\sqrt[3]{4}x=x+1\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)

Vãi cả lớp 8 học hệ pt , lạy mấy e rồi đó, :V

^_^

28 tháng 7 2017

\(x^2-25=y\left(y+6\right)\) (1)

\(\Leftrightarrow x^2-y^2-6y-25=0\)

\(\Leftrightarrow x^2-\left(y+3\right)^2=16\)

\(\Leftrightarrow\left(x-y-3\right)\left(x+y+3\right)=16\)

Xét các trường hợp, ta tìm được các no nguyên của pt (1).

\(x^2+x+6=y^2\) (2)

\(\Leftrightarrow4x^2+4x+24=4y^2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2y^2\right)=-23\)

\(\Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=-23\)

Xét các trường hợp, ta tìm được các no nguyên của pt (2).

\(x^2+13y^2=100+6xy\) (3)

\(\Leftrightarrow x^2-6xy+9y^2+4y^2=100\)

\(\Leftrightarrow\left(x-3y\right)^2+\left(2y\right)^2=0^2+\left(\pm10\right)^2=\left(\pm6\right)^2+\left(\pm8\right)^2\)

Xét các trường hợp, ta tìm được các no nguyên của pt (3).

\(x^2-4x=169-5y^2\) (4)

\(\Leftrightarrow\left(x-2\right)^2+5y^2=173\)

Ta thấy:

\(5y^2\) luôn có chữ số tận cùng là 5 hoặc 0

=> Để thoả mãn pt (4), (x - 2)2 phải có chữ số tận cùng là 8 hoặc 3 (vô lý)

Vậy pt (4) vô n0.

\(x^2-x=6-y^2\) (5)

\(\Leftrightarrow4x^2-4x=24-4y^2\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2y\right)^2=25=\left(\pm25\right)^2+0^2=\left(\pm3\right)^2+\left(\pm4\right)^2\)

Xét các trường hợp, ta tìm được các no nguyên của pt (5).

28 tháng 7 2017

\(y^3=x^3+x^2+x+1\left(1\right)\)

Ta có:

\(y^3=x^3+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>x^3\)

\(\Rightarrow y>x\)

\(\Rightarrow y\ge x+1\)

\(\Rightarrow y^3\ge\left(x+1\right)^3\)

\(\Rightarrow x^3+x^2+x+1\ge x^3+3x^2+3x+1\)

\(\Leftrightarrow2x^2+2x\le0\)

\(\Leftrightarrow2x\left(x+1\right)\le0\)

\(\Rightarrow-1\le x\le0\) mà x là số nguyên

=> x = - 1 hoặc x = 0

(+) x = - 1

VT = 0

=> y = 0 ; x = - 1 (nhận)

(+) x = 0

VT = 1

=> y = 1 ; x = 0 (nhận)

Vậy pt (1) có nonguyên (x ; y) = (0 ; 1) ; (- 1 ; 0)

\(x^4+x^2+1=y^2\) (2)

(+)

\(\left(2\right)\Leftrightarrow y^2=x^4+2x^2+1-x^2\)

\(\Leftrightarrow y^2-\left(x^2+1\right)^2=x^2\)

(+)

\(\left(2\right)\Leftrightarrow x^4+4x^2+4-3x^2-3=y^2\)

\(\Leftrightarrow\left(x^2+2\right)^2-y^2=3\left(x^2+1\right)\)

Ta thấy:

Với mọi \(x\ne0\) thì \(\left(x^2+1\right)^2< y^2< \left(x^2+2\right)^2\) (vô lý)

=> x = 0

=> y = 1 (nhận)

Vậy pt (2) có nonguyên (x ; y) = (0 ; 1)

5 tháng 6 2020

2) \(x^4-x^2+2x+2\)

\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)

\(=x^2\left(x-1+2\right)\left(x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(=\left(x^2+x\right)^2\)

Vậy \(x^4-x^2+2x+2\)là số chính phương với mọi số nguyên x