1
a,Tìm giá trị nhỏ nhất cuar số hữu tỉ A= 5\x-2;với y thuộc z
bTimf giá trị lớn nhất và nhỏ nhất của số hữu tỉ B=x-7\x-2;với x thuộc z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để A là số hữu tỉ dương thì \(\dfrac{x-5}{9-x}>0\)
\(\Leftrightarrow\dfrac{x-5}{x-9}< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-5>0\\x-9< 0\end{matrix}\right.\Leftrightarrow5< x< 9\)
b: Để A không là số hữu tỉ dương cũng không là số hữu tỉ âm thì x-5=0
hay x=5
c: Để A là số nguyên thì \(x-5⋮9-x\)
\(\Leftrightarrow4⋮x-9\)
\(\Leftrightarrow x-9\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{10;8;11;7;13;5\right\}\)
a,Tìm x để A là số hữu tỉ.
để A là số hữu tỉ => x - 1 \(\ne\)0
=> x \(\ne\)1
vậy x thuộc Z và x \(\ne\) 1
`a,`
`A=3/(x-1)`
Để `A` là số hữu tỉ
`->x-1 \ne 0`
`->x\ne 0+1`
`-> x \ne 1`
Vậy `x \ne 1` để `A` là số hữu tỉ
`b,`
`A=3/(x-1) (x \ne 1)`
Để `A` thuộc Z
`->3` chia hết cho `x-1`
`->x-1` thuộc ước của `3 = {1;-1;3;-3}`
`->x` thuộc `{2;0;4;-2}` (Thỏa mãn)
Vậy `x` thuộc `{2; 0; 4;-2}` để `A` thuộc Z
`c,`
`A=3/(x-1) (x \ne 1)`
Để `A` lớn nhất
`->3/(x-1)` lớn nhất
`->x-1` nhỏ nhất
`->x-1=1` (Do `1` là số nguyên dương nhỏ nhất)
`->x=2` (Thỏa mãn)
Với `x=2`
`->A=3/(2-1)=3/1=3`
Vậy `max A=3` khi `x=2`
`d,`
`A=3/(x-1) (x \ne 1)`
Để `A` nhỏ nhất
`->3/(x-1)` nhỏ nhất
`->x-1` lớn nhất
`->x-1=-1` (Do `-1` là số nguyên âm lớn nhất)
`->x=0`
Với `x=0`
`-> A=3/(0-1)=3/(-1)=-3`
Vậy `min A=-3` khi `x=0`
Bài giải
\(\frac{a-3}{2}\) đạt giá trị dương khi \(\left(a-3\right)\text{ }⋮\text{ }2\)
Mà số nguyên a nhỏ nhất => \(\frac{a-3}{2}\) đạt giá trị nguyên dương nhỏ nhất
\(\Rightarrow\text{ }\frac{a-3}{2}=1\)
\(\Rightarrow\text{ }a-3=2\)
\(a=2+3\)
\(x=5\)